5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

論理パズル

1 :□7×7=4□□:2007/03/09(金) 20:45:01 ID:Y/tOoZi1
論理パズルを出しあイングするスレ

2 :□7×7=4□□:2007/03/09(金) 20:55:30 ID:Y/tOoZi1
早速問題

(1)
ジュースの入ったペットボトルと3つのコップがあります
計量カップなどはなくコップの形も違うので感覚でしか分けることができません
3人でこのジュースを「全員が納得いくように」分けたいのですが
どのような手順をとればよいでしょうか

(2)
(1)の3をNに一般化してください

3 :□7×7=4□□:2007/03/09(金) 21:33:28 ID:Y/tOoZi1
有名な問題なので蛇足かとは思いますが

問題が2人の場合

・Aさんが分けてAさんが選ぶようにすると
Aさんは好きに分けて好きな方をとって納得いくでしょうが
Bさんは好きじゃない方を取らされて納得いかないかもしれません

・Aさんが分けてBさんが選ぶようにすると
Aさんがどのように分けてもBさんは好きな方を選べるので納得いくでしょう
Aさんは選択の余地なく残り物を取らされますが
最初に分ける際にどっちを取らされてもいいように分ける自由はあるので
Aさんも納得いくでしょう

「全員が納得いくように」とはこんな感じです

4 :□7×7=4□□:2007/03/10(土) 09:23:11 ID:UsbqzLCz
見解:できそうにない・・・

5 :□7×7=4□□:2007/03/10(土) 11:53:05 ID:yQs4/L/Y
Aは等しいと思うように3つに分ける。

Bは3つの中から上位2つだと思うのを選び、改めて等しいと思うように2つに分ける。

Cは3つの中から好きなのを1つ選んで自分のものとする。

Bが分けた2つのうちの1つを選んだなら、もう片方がBので残りがAのもの。

最初にBが選ばなかった1つを選んだ場合、Aが残りの2つのうち好きなほうを選び、もう片方がBのもの。


6 :□7×7=4□□:2007/03/10(土) 16:28:36 ID:LbVa6KzU
>>5でもオッケーぽいね
ただ場合分けがあると一般化が難しいんではないか

7 :4:2007/03/10(土) 16:46:39 ID:ErPoeCKo
>>5
>Cは3つの中から好きなのを1つ選んで自分のものとする。
このとき,Aは損をしたと感じないのかな・・・
やっぱりできそうにない・・・

8 :□7×7=4□□:2007/03/10(土) 17:00:35 ID:LbVa6KzU
なんで?5はおっけーでしょ

他人が“自分基準の1/3”より多く取るのは納得いかない!ってことはなくて
あくまで自分が“自分基準の1/3と同じかそれ以上”とれれば納得いくんでしょ

5なら全員が“自分基準の1/3と同じかそれ以上”とれたと思ってるよ

9 :□7×7=4□□:2007/03/10(土) 18:00:56 ID:1oLBgfVw

亀梨和也痴漢疑惑

http://sports2.2ch.net/test/read.cgi/entrance2/1172926365/275



10 :4:2007/03/10(土) 19:18:40 ID:ErPoeCKo
>>8 そういう「納得」なら納得.自分の「納得」の意味は
全員が全員「自分が【一番多い】のを選んだ」と感じる意味での納得
と考えている.2人のときにはそういう納得だと思う.
>>5の場合だと
自分(A)が分けたものを再び分け,それを取るわけだから
最初に分けた自分が損だ!と感じて納得できないんだよね.
「最初に分ける人が不利だよ」と感じてしまうけどな...

11 :□7×7=4□□:2007/03/10(土) 20:05:08 ID:JzUmmiF/
5であってるよ。
>>10が言わんとするところがよくわからないな
CがBの分けた二つのどちらかを選んだら、Aは自分で分けた分量を得られるので満足する
CがBで使った二つを選ばなければ、Aは自分で好きな方を選ぶことが出来るので満足する
後者の場合Aに関して言えば、元々自分で分けた等量のものを再分配したのだから
最低量の1/3を得ることができる、とAが予想する

12 :□7×7=4□□:2007/03/10(土) 20:36:08 ID:LbVa6KzU
Bがいじった2つのうち一方は絶対に“A基準の1/3”より多いんだから
それをBかCがとるのが気に食わんってことでしょ

言ってることは分かるけど明らかに無理っぽいので
問題の設定としては

「全員が納得する」=「全員が“自分基準の1/3”と同じかそれ以上とれる」

でいいんではないか

13 :□7×7=4□□:2007/03/10(土) 23:00:40 ID:Upp1ABb4
>>10
> 全員が全員「自分が【一番多い】のを選んだ」と感じる意味での納得
> と考えている.2人のときにはそういう納得だと思う.

2人の場合も結局選ぶ方が圧倒的に有利だから無理だと思うよ。

私がこの問題を知ったときは兄弟という設定で、
兄が分けて弟が選ぶという解答だった。
兄に弟の面倒を見させるという事と、
最後は「お兄ちゃんでしょ」で済ますことが狙いだったような。

14 :4:2007/03/10(土) 23:02:48 ID:Zk2y+nvk
>>11
>>12
ごめん.確かにそうだね.了解.

15 :2:2007/03/11(日) 13:51:14 ID:xVVXgkFK
答えは明日夜あたりいいますね
>>5は正解です(他の方法もあります)

(2)の一般化もよかったら考えてみてください

16 :□7×7=4□□:2007/03/11(日) 16:14:42 ID:iw9gNl1k
cake cutting problem という有名問題


17 :2:2007/03/12(月) 18:32:56 ID:P701zJ2t
解答です

(1)コップにゆっくりジュースを注いでいく
(2)1/Nになったと思った人が止める
(3)止めた人がそれをもらい1人決定
これをN-1回繰り返す

18 :□7×7=4□□:2007/03/12(月) 19:19:10 ID:li5Da8C9
>>17
それだと、最後の一人が不満になる可能性があるんじゃないか?
特にNが多数の場合、最後の方の人のジュースが無いって事態も起こりえると思うんだけど。

それは、止めなかったのが悪いって事で納得するんか?
それなら、誰かが人数分なるべく均等に分けてジャンケンで決めても同じような気がするけどw

19 :□7×7=4□□:2007/03/12(月) 19:47:49 ID:P701zJ2t
あれ?ちょっとまて

とりあえず、まだジュースを持ってない人は
「既にジュースを持ってる奴は全員1/N以下しかもってない」と思ってる
それはいいよね?自分がストップと言わなかったって事はそういう事だ

それで例えば最後の一人になって
残ったジュースがそいつからみて明らかに1/N未満しか残ってないとしても
「他の奴の持ってるジュースは1/N以下」と思ってるのは変わらない

つまり・・・どうなるんだろか?

20 :□7×7=4□□:2007/03/12(月) 20:11:11 ID:P701zJ2t
最後の1人は「他の奴のジュースはみんな1/N以下」と思ってる
それはイコール「残った最後のジュースは1/N以上である」と計算できる

一方計算からじゃなくて実際に残った最後のジュースからも答えを導ける
これはいわば実測値みたいなもの

それと理論値があわないからって、やっぱりそいつが悪いんじゃないか?
“納得”ってのはそういうことじゃないか?
自分の理論でそうなってるんなら納得するしかないでしょ

これは自分の考えで正解かどうかは分からん

21 :□7×7=4□□:2007/03/12(月) 20:57:37 ID:P701zJ2t
>>21
>>12のように
問題の「全員が納得する」を「全員が“自分基準の1/N”以上得る」と言い換えるとする
これは必ずしも実現不可能 (Aの1/N)+(Bの1/N)+ … = 1 とは限らないから
極端な話、半分以上でも「まだまだ1/Nじゃない!」という感覚の異常者がいたらそんな要求通るわけない

これは方法に関係ない どんな方法だろうと無理
こんなんわがまま認めるなら問題が成立しない

だからやっぱり>>17であってるはず

22 :□7×7=4□□:2007/03/12(月) 21:40:31 ID:6cXMzUrg
納得するのかなぁ・・・

N人いて、個々人の感覚の容量で分けるんでしょ
この方法だとそれぞれの感覚の容量の初期値によって、もらえない人がでてくる。
もらえないのは必ず大きな感覚の容量を持つ人であって、小さい人は必ず貰えることになる・・・
大きな感覚の容量を持つ人は別に欲張っているわけではなくて、
他の人と同じように1/Nを欲しがっているだけだから貰えないのはかわいそうだと思う

23 :□7×7=4□□:2007/03/12(月) 21:48:21 ID:P701zJ2t
でもそういえば>>5はあってるんだよね
ちっともう一度考えてみます

24 :□7×7=4□□:2007/03/12(月) 22:48:14 ID:Dn+YuOsH
>16のヒントでぐぐったら出てきた。
ttp://en.wikipedia.org/wiki/Fair_division

25 :4:2007/03/13(火) 00:24:14 ID:3vR2/hhr
>>17
その解答の前提は,
「皆それぞれ違う量で止める」
ってこと?


26 :□7×7=4□□:2007/03/13(火) 02:57:02 ID:bLM7ywx9
N人の場合(A1,A2,...,AN)

A1は2等分だと思うようにジュースを分け、A2は多いと思う方を取る。取らなかった方はA1が持つ。

A1,A2は自分のを3等分だと思うように分け、A3はそれぞれから一番多いと思うのを選んで取る。

A1,A2,A3は自分のを4等分だと思うように分け、A4はそれぞれから一番多いと思うのを選んで取る。

・・・・・・・・・・・・・・・・・

A1,A2,...,AN-1は自分のをN等分だと思うように分け、ANはそれぞれから一番多いと思うのを選んで取る。


27 :□7×7=4□□:2007/03/13(火) 03:08:07 ID:bLM7ywx9
3人の場合を思いついて、うれしくてうれしくて>>5を書き込んだ。
N人の場合も同じようにやるのかなと思って頭グチャグチャになってた。
上のはかなり苦労してたどり着いついたんで、分けるときのコップの数が足りないんじゃないかとかは言わないで下さいね。


28 :□7×7=4□□:2007/03/13(火) 07:07:15 ID:2nD9o7/5
>26
つまり公平かどうか採決をとって、
全員一致なら無問題。
ひとりだけ反対ならその人に優先権、てことかな。

29 :□7×7=4□□:2007/03/13(火) 07:59:19 ID:jUQg1ykG
>>26は合ってると思う

>>17は問題点があるね。ポイントは2つ
@>>3>>5の方法に比べて感覚上の1/nと実際の1/nの誤差が大きい。
A「自分は1/n以上取った」と思えるか否かは状況によって変わってしまう。

例えば10人で分ける場合、はじめにストップをかけた人がその時点では
「これは絶対に1/10以上あるぜw」と確信していても、残り3人になった段階で
まだまだたっぷり残っているジュースとまだもらっていない3人のホクホク顔をみて
「俺の1/10もねーよーー!!」となってしまうケースは充分に考えられます。

つまり>>17の方法では各人が自分のジュースをもらった段階では納得できるが、
全員の分配が終了した時点ではその納得感は保障されないところに問題があります。

30 :□7×7=4□□:2007/03/13(火) 10:44:51 ID:fVhpgK9M
こんなのはどうだろう

まず一人目の人が1/Nだと思うように分ける
残りのN-1人が、多かったり少なかったり1/Nになっていないと思うコップを選ぶ。
残ったコップを一人目の物にする
次に二人目の人がジュースを再分配し、二人目以外のN-2人が同様におかしいと思うコップを選ぶ
残ったコップを二人目の物にする
繰り返し・・・

31 :□7×7=4□□:2007/03/13(火) 12:09:16 ID:bLM7ywx9
>>28
違います。

>>30
残ったコップを...って、残らなかったらどうするの?

>>17は正しいと思う。
ストップかけたんなら、それがその人にとっての1/Nで確定でしょう?
同時に複数の人がストップかけたら、適当にその中の1人が取ればよい。
本当に1/Nだと思ってるなら、もめることは絶対にないはず。
>>17がおかしいと言う人は、あまりに現実の問題としてとらえすぎでは?
あくまで理論の問題の例え話ではないの?

32 :17:2007/03/13(火) 12:28:37 ID:OJVa8ZWv
これはどうだろうか

 ○○○  まず図の説明
 ○↑↓  ○:等しい ↑:多い ↓:少ない (と思ってる)
 ↓↑○  横はコップ 縦は人

アイデアとしては「次のような状況になれば全員納得できる」
 ○□□□
 □○□□
 □□○□    □はなんでもいい
 □□□○

33 :□7×7=4□□:2007/03/13(火) 12:31:57 ID:OJVa8ZWv
で その方法は次のとおり

・なんでもいいのでN個に分ける
・一列目を次のようになるよう調整する
 ○□□□ 
 ↓■□□ 調整の方法は
 ↓□□□ 一列目のコップが↑と思う人が○になるまでへらすだけ
 ↓□□□ あとは○の人を一行目に移動させればよい

・一列目はそれ以上いじらず■からまた同じ事を繰り返す

>>17と違い保証があるのでいけると思うんだが

34 :□7×7=4□□:2007/03/13(火) 12:33:11 ID:fVhpgK9M
>>31
コップはN個あるんだから必ず一つ残るよ

35 :□7×7=4□□:2007/03/13(火) 13:34:21 ID:jUQg1ykG
>>30は無理そうですね。
A〜Jの10人で分けるとしてまずAが10等分する。
Bからみて1/10より多いものが二つ以上あったとき
Bがそのうち一つを取ったとしてもC〜Jがそれらの残りすべてを選びきれなければ
AがB基準の1/10を超える量を得ることになる。
これにはBさん大激怒ですよ。
「9等分しろって言われてももう9/10残ってねーんだよ!」
となってしまいます。

人の解答の欠点を指摘するばかりでごめんなさい。
私も考えてはいるのですが、すぐに自分の欠陥に気付いてしまうのですorz

36 :□7×7=4□□:2007/03/13(火) 13:42:26 ID:bLM7ywx9
>>34
ああ、選ぶコップは1人1つということですか。
それでもやはりダメです。
例えば3人の場合でどういうことになるか具体的に考えてみるといいと思います。


37 :□7×7=4□□:2007/03/13(火) 13:58:52 ID:fVhpgK9M
>>35
やっぱりそのつっこみが入りますかね
暗黙の了解で明らかにおかしなものは他人がカバーすることで
個人で分けた1/Nと、全体で選んだ1/Nが近づくと思ったんですが
なかなか難しいですな

38 :17:2007/03/13(火) 16:43:19 ID:OJVa8ZWv
やっぱり>>17であってると思います

1/Nとって1/Nとって1/Nとって… と考えてたからおかしなことになったけど
1/Nとって1/N-1とって…1/3とって1/2とって と考えれば問題ないはずです

三人や四人の場合で考えてみてください
>>32-33は忘れてください

39 :4:2007/03/13(火) 19:53:11 ID:DRpjIWaK
>>31
>適当にその中の1人が取ればよい。
そうだね.これの選び方でもめるかもしれないが,
理論的に大丈夫だな.2人の場合を考えるとかなり納得.
>>17 うまいな.しかし,
なぜ分けて選ぶだと破綻するんだろう・・・3人まではできるのに・・・
というか,2人のときと3人のときですでに納得のレベルが違う感じがあるから
帰納的ではないみたいだね.
それを全く別の論理で回避してるわけか,17は・・・う〜〜ん なかなか.

40 :□7×7=4□□:2007/03/13(火) 20:55:57 ID:OJVa8ZWv
そういってもらうとうれしいです
まあこの答えを書きたくてわざわざスレまで立てたんですが

この問題だけを考えるスレではないんで
他にも面白い問題があったら書いてください

41 :□7×7=4□□:2007/03/13(火) 23:30:56 ID:itjj4HQA
 関係ないけど17の方法で例えば1人目の選択が済んだとして次の振り分け時は
納得の基準として相変わらずJ(ジュースの総量)/Nなのか
J−J1(最初の1人が選んだジュースの量)/(N−1)なのかどっちなんだろう。

最初のJ1を見送ったなら、J/N>J1(だと思ってる)
ので基準を(J−J1)/(N−1)に変えた方が得ではあるが、欲張っている
ともいえるので当初通りJ/Nでも十分納得できる値ではあるのでそのままか。

ただ後半になってくると明らかに残りが少なくなってJ/N基準では
絶対足りねえよって場合になる可能性は否定できないんだよなぁ。

例えば2N人いて半分のN回目の振り分けが終わった時に、あれ、残りの量明らかに
J/2より少ねえよ、これ俺(を含め他)の基準値J/Nが実際の値J/Nより多いから
取り残されたんじゃねえの。このままではマズイ、終わった頃には俺の分ありません
でしたって事になりかねないのでこうなったら多少我慢して自分の納得量を下げてでも
早めに取った方がマシか、しかしどれだけ下げれば妥当なのだろう。こうなったら
J−JN(N回目まで取られたジュースの量)/Nにするかぁ。
とかなるんだろうか。

なったからどうしたって言われても良く分かんないけども。

42 :□7×7=4□□:2007/03/14(水) 08:52:52 ID:XoZhqMsI
(J−J1)/(N−1)でいけばいけるはずだよ。
例えば10人なら

・一人目は最初の1/10、つまり1/10Jとれたと思い納得
 他の人もまだ9/10J以上残ってると思い文句なし

・二人目は残りの1/9、つまり9/10J以上×1/9=1/10J以上とれたと思い納得
 他の人もまだ9/10J以上×8/9以上=8/10J以上残ってると思い文句なし
 
・三人目は残りの1/8、つまり8/10J以上×1/8=1/10J以上とれたと思い納得
 他の人もまだ8/10J以上×7/8以上=7/10J以上残ってると思い文句なし

……繰り返してラスト2人

・九人目は残りの1/2、つまり2/10J以上×1/2=1/10J以上とれたと思い納得
 十人目も2/10J以上×1/2以上=1/10J以上残ったと思い納得


これはこれで正解と思うけど他に全く違うアプローチの方法とかないかな。

43 :□7×7=4□□:2007/03/15(木) 23:03:24 ID:fS1yxfwo
>5を4人に拡大するだけでちょっとした問題発生
Aの分配をBは「最も少ない一つをAに残す」ことでとがめるわけだが
そのBの残し方をCとDの両方がとがめる場合
(Bの分けた3つ共Aに残した分より少なく見える)
CとDの決着をどうしようか

卓ゲ板住人としては>17で「イッツマイン」ってクニチー大先生のカードゲームを思い出したとこ
ttp://ejf.cside.ne.jp/review/itsmine.html

44 :□7×7=4□□:2007/03/16(金) 02:54:42 ID:qHgeAPMq
>>5のやり方で4人の場合をというのは考えてみたけど、どうもうまく行かない。
Aが4つに分け、Bが上位3つを選んで分け、次にCが上位2つを選ぶときが問題。
Bが分けた3つから選んでくれればいいんだけど残りの1つを選ぶかもしれないわけで..
そうなるともうゴチャゴチャでギブアップしました。
それで思いついた>>26がキレイでお気に入り。
分けるときのコップが足りないじゃないかというのはあるけど。
コップはN個という設定だからダメかな?まあいいのかな?まあいいや。

45 :□7×7=4□□:2007/03/16(金) 07:28:35 ID:dHESm5DG
>>26がよく分からんのだが
3行目以降が分からんので解説してください

46 :4:2007/03/16(金) 10:27:45 ID:onRsDTSW
>>44 確かに,コップが十分多くあればできるね.
>>26 うまい,かつ,きれい.

47 :□7×7=4□□:2007/03/16(金) 11:36:15 ID:GwtfnMMw
>>26って、3人で分けることすら出来てないと思うんだけど
例えばA1の量り取った量がA2にとって2/3以上だと思ったらどうするんだろう


48 :4:2007/03/16(金) 11:54:08 ID:wKHs9akN
>>47 本当だ・・・気付かなかった.

49 :□7×7=4□□:2007/03/16(金) 12:19:29 ID:aRjUIF/R
>>47
A2からみて他の誰かが得をしているように思うケースについて
おっしゃっているのでしょうか?
この問題では各人が自分は1/3以上取ったと思うことができれば
良しということになっています
自分は1/n以上取り、他の人は1/n以下しか取っていないと
全員が思える状況を「無羨望」というらしいですが
今のところこのスレで無羨望なのは>>3だけです

50 :□7×7=4□□:2007/03/16(金) 12:32:10 ID:GwtfnMMw
>>49
>>26自体が説明不足すぎて、どんなわけ方にしたいのか分からないけども
もう少し詳しく書くと、A2がA1の量を2/3以上と思っている限り
A2は量りとる量に関して、たとえ残り全部入れたとしても1/3取れないので満足できません

無羨望というわけではないです

51 :□7×7=4□□:2007/03/16(金) 12:55:15 ID:aRjUIF/R
>>50
A2ははじめにA1の分けた2つから好きな方を選べるのだから
この時点でA2からみたA1の取り分は1/2以下になりますよ


52 :□7×7=4□□:2007/03/16(金) 13:17:33 ID:GwtfnMMw
>>51
ああー、一行目とそれ以下が繋がっているのですね
でもあまり変わらないかも・・・
ローマ数字がコップだとして3人目の時点で
A1:TUV A2:WXY
の場合、
3人目がT>U>V>W>X>Yで、U+V>T+Wと思ったらどうするんでしょう

53 :□7×7=4□□:2007/03/16(金) 13:39:27 ID:dHESm5DG
ああやっと意味分かった
これはあってるんじゃないか?

例えば3人の場合
A1A2がもちろん納得いくし
A3はA1A2がどのように分けられたと感じようが
A1×1/3以上+A2×1/3以上=(A1+A2)×1/3以上=全体×1/3以上
取れるんだから納得いくでしょ


54 :□7×7=4□□:2007/03/16(金) 13:41:00 ID:aRjUIF/R
>>5の方法を4人の場合に拡張することができました!
冗長な説明を防ぐためなるべく簡潔に書きます。不備を見つけたらツッコミよろです。
以下コップに1〜4、プレイヤーにA〜Dと名前を与えます

まずAが4つに分けます。この状態を
1-A 2-A 3-A 4-A と表記します。今後プレイヤーに触れられないコップがあれば
Aはそのコップをとることに異存はありません。
つぎにBが上位3つを3等分し、Cが上位2つを2等分します。
すべてのパターンは次の二つに帰着します。
(ケース1)1-C 2-C 3-B 4-A
(ケース2)1-C 2-B 3-B 4-C

(ケース1)の場合、Dからコップを選択します。1か2をとれば各自自分が最後に触ったコップを得て終了です。
Dが3を選んだ場合、次にBが1か2から選択します。Bは1と2のどちらかは1/4以上だと思っているので(★)問題なし
この後A、Cに分配しOKです。
Dが4を選んだ場合、次にAが選択します(Aは4はちょうど1/4と思っている)。Aが1か2を選べば問題なく分配でき、
Aが3を選んだ場合は次にBが選択します。(★)よりBは1/4以上と思うものを選べるので
問題なく分配が完了します。
以上(ケース1)の分配は問題なし。

(ケース2)については後で書きますね。


55 :□7×7=4□□:2007/03/16(金) 13:41:33 ID:GwtfnMMw
ああ〜なるほど

56 :4:2007/03/16(金) 13:47:38 ID:wKHs9akN
>>53
同じくなるほど.
「納得」の意味合いを間違えてた・・・

57 :54:2007/03/16(金) 14:30:16 ID:aRjUIF/R
>>54の続きです。(ケース2)についても問題なく分配できることを示します。

(ケース2)1-C 2-B 3-B 4-C
ここでAとDにそれぞれ上位2つと思うものを指差してもらいます。
A、Dのどちらか一人でも1・4から一つ、2・3から一つを指差せば
その人がその2つを2等分すれば(ケース1)に帰着できます。
また、例えばAが1・4、Cが2・3と指差した場合、Aが1・4から、Cが2・3から
多いと思うほうをとれば分配は完了します。(AC逆も同様)
よって以下A・Dともに1・4を指差したとします。(ともに2・3でも同様)
この場合はB以外の3人に「Bに渡っても構わないコップ」を選んでもらいます。
3人とも2・3のどちらかは1/4以下と思っているので選べるはずです。
ここでどちらかに3票入ればそれをBが得て、後は3人になったので>>5の方法で再分配。
以下2のコップに2票入ったとする。(3でも同様)
この場合3に票を入れた人に対して「2を自分で取るか、Bに与えるか」という
質問をします。答えが「Bに与える」であれば以下>>5の方法。
「自分で取る」であればその人に2、Bに3を与え、残り二人で1・4の合計を>>3で再分配。
ここで「残り二人」からみれば、Bに3が渡ってBが得をしたように思う可能性があるが
B以外の3人は「1・4は上位2つ」と思っている(Cを含めて)ので
1・4の合計を再分配することに異存はない。
以上(ケース2)についても問題なく分配することが可能である。

>>54とあわせて、4人の場合で分配できることが証明された。
26さんいかがでしょうか?

58 :□7×7=4□□:2007/03/16(金) 18:14:29 ID:Uga/bfgC
( ´・ω)もう中国人のイメージがオワテるじゃん。
テレビやマスコミが絶対おしえない、部分を2chが広めて

オワテルじゃん。
中国って何がいいの?

昔はテレビと新聞しかなく、ゲームのキャラや、漫画のキャラ、
それもまるで、日本人みたいな中国人ばっかり。

当たり前だもんな。本当の中国人は隠蔽されてたもの。
で、もう中国料理やらドラマやらマスコミの印象がなくなり、

最初から2chで中国を見る日本人が中国に良いイメージがあるの?
ないでしょ。チベット侵略。ハニートラップ。虐殺国家。日本軍に自分たちの虐殺をかぶせた。

今も日本を侵略している。

今中国人いいなー、といってるやつは、
チュンリーとか、中華一番とか、らんまのシャンプーとか
の日本人が、日本人向けに作られた中国人
に洗脳されてるんだよ。

馬鹿だろ?
洗脳されてる奴は洗脳されてる事に気づかないって
こういうことじゃん・・・・・


59 :□7×7=4□□:2007/03/16(金) 19:44:49 ID:CeKZPvIx
>>58の暗号を誰か解いてくれ

60 :54:2007/03/16(金) 22:03:36 ID:aRjUIF/R
>>54>>57
すみません、重大な間違いに気付きましたorz
>>57の6行目で(ケース1)に帰着できますとありますが
帰着できません。出直しです。
スレ汚し申し訳ありません。

61 :□7×7=4□□:2007/03/17(土) 03:50:28 ID:BU10Nzv+
>>26です。そんなにわかりにくいかなぁ?
まあでもそうなのか..悪かった。
>>54
すごいですね!
俺はケース1までで、ケース2でお手上げ、逃亡しました。
欠陥が見つかったようだけど、頑張って下さい。
俺ももう一度考えてみます。

62 :□7×7=4□□:2007/03/21(水) 00:02:07 ID:b4krHcoe
ケース2の場合Bの時点でAにとっては「1B+2B+3B=3x4A」の範囲で
あらゆる大小関係が考えられるわけで (具体的には 4Aが(単独or2つタイor3つタイで)トップor最下位 を除く)
1Bと平均値(4Aのこと)足して2で割ったら 序列にほとんど限定がなくなるんじゃない?

63 :□7×7=4□□:2007/03/21(水) 05:37:40 ID:JFHcBxAa
>>62
1Bと....以下の意味がよくわからん

64 :□7×7=4□□:2007/03/23(金) 05:18:06 ID:uUb8EiQG
ぱっと考えられるのは最小の約数分順番にわけていって、
その分けたコップを支持する人間が同等になったら、その約数分のグループを分けて
同じことを繰り返す。
Nが偶数なら、その量を半分にする行為を、支持が半々になるまで、A、B、C、・・と続けていく。
奇数でも、大体は同じ方法で可能。
ただ、nが素数だと、n分分ける行為をしつづけなきゃいけない。

よって、そんなめんどくさい事せずに、Nが簡単に分けられる人数になるまでバトロワすればok

65 :□7×7=4□□:2007/03/23(金) 11:09:33 ID:m6Pj/WqY
>>64
何のこっちゃ全然わからん
例えば4人のときで具体的に書いてみて欲しい

66 :□7×7=4□□:2007/03/24(土) 22:38:58 ID:r14Mzoq6
>>2
Aのコップいっぱいにジュースを注ぎAからBに,次にCに全部移す
B,Cを2人に渡し、最後に自分の分を注ぐ

67 :□7×7=4□□:2007/03/25(日) 16:19:34 ID:EJhtlvAF
なぜ>>5が正解なんだ?教えてくれ?

>Aは等しいと思うように3つに分ける。
>Bは3つの中から上位2つだと思うのを選び、改めて等しいと思うように2つに分ける。
>Cは3つの中から好きなのを1つ選んで自分のものとする。
>Bが分けた2つのうちの1つを選んだなら、もう片方がBので残りがAのもの。
ここまでおk

>最初にBが選ばなかった1つを選んだ場合、Aが残りの2つのうち好きなほうを選び、もう片方がBのもの。
ここでAが「Bが分けたもの」の中から選ばないといけないという時点で
>>2の「どっちを取らされてもいいように分ける自由」もなくなってるし
3つのうちからではなく2つから選ぶ権利がないため
「好きな方を選べるので」にもあてはまらない(Cが取ったものがいいと思う場合もある)
からダメな気がするんだが・・・

68 :□7×7=4□□:2007/03/25(日) 17:35:46 ID:QIFlRcA0
Bが分けた2つの総量はAが2/3だと認定したものだよ。
Aにとっての2/3を2つに分けて多いと思う方を取っていいならAは1/3以上取れたと思うはず。

69 :□7×7=4□□:2007/03/26(月) 03:07:06 ID:5r3fp8X1
>65
四人の場合なら仮にA,B,C,Dの人間がいるとして、Aが二つに分ける。四の最小約数は2だから。
分けたコップを仮に(あ)、(い)とする。
で、全員で(あ)と(い)どちらを支持するか。多いと思うか決をとる。(同じという選択があっても良い。)
Aはどちらでも良いはずなので、B,C,Dが2対1に別れればいい。
あとは、(二人で半分のケース)×2をやればいい。

Aの分け方で支持がきれいに別れなかった場合は、
Bが2つに分ける。Aのを元にしても良いし、最初から分けなおしてもいい。
例えばBCDが(あ)を支持しているなら、Aは(い)で構わないと思っていたのだから、
誰か一人でも(い)に鞍替えしても良いと思えるだけ、ちょビットずつでいいから移せばいい。
以後同上。

3人、5人の場合でも同じようなやり方がきる。
最初から三つに分ける、五つに分けるでも構わないが、
例えば、3人なら最初に2対1で分ける。5人なら3対2という風にでも可能。
nが素数だとしちめんどくさいというだけで、1/nが良いのならこの配分も可能なはず。


このやり方は>17で納得されていない点を、ある程度緩和できる。
大きいnから1/nをわざわざ搾り出す必要がないこと。
大きいnを2つ、3つに分ける時は、最終的な誤差があまり広がらないこと。
>17の場合に、同じ1/nに複数の人間が手を挙げたときにどうするかの回答が必要ないこと。

でも、nの数が大きい時には、実際にやるのはめんどくさいのでバトロワしろといったんだ。
頭の体操的には全部半々で分けていって、人数以上になった分は捨てろ。が正解だろうな。
もしくは全員に分けずに捨てろ。

あと>2からn個のコップとペットボトルがあるとわかるから、
コップで半分は無理とか言われるかもしれないが、一応ぺットボトルが半分でいけるはず。
それとここでいう最小の約数は2以上の数でよろしく。素因数?

こんなところでどうよ。

70 :□7×7=4□□:2007/03/27(火) 01:57:30 ID:0bCbSpoy
3人の死刑囚がいます
王様は3人の死刑囚に言いました
「ここに白い帽子3つと黒い帽子が2ある、白か黒どちらかをお前たちにかぶせ
白い帽子をかぶったものが逃げたらそのまま逃がしてやろう、ただし黒い帽子をかぶった
ものが逃げたらその場で射殺する」
死刑囚は自分がなに色の帽子をかぶっているかはわかりませんが
他の二人がかぶっている帽子の色はわかります
王様は3人とも白い帽子をかぶせました
3人はしばらく考えた後、自分が白だと確信していっせいに逃げました
さて、なぜ自分が白だと確信できたのでしょう?
※アイコンタクトとかそういう答えじゃない

71 :□7×7=4□□:2007/03/27(火) 07:03:55 ID:+35VoQqM
もし黒帽子が2つ使われていたら、
白帽子の人間からは黒帽子が二つ見え、
自分は白帽子しかない事がわかって、そいつはすぐさま逃げる。
他の二人は白と黒の帽子を見ているので、
自分が白か黒かは判断できないが、白の人間が真っ先に逃げたことで、
自分が黒だとわかり逃げない。


黒帽子が一つ使われている場合、
まず黒帽子の人間は、白帽子二つを見ている為、
自分が白のかどうかは、この時点では判断できないので逃げない。
一方白帽子をかぶっている二人からは白と黒が見えており、
自分が白か黒かは判じかねる状況だが、
見えている白帽子の人間がすぐさま逃げないことから、
黒帽子2つの場合から考えて、自分の帽子が黒ではないとわかり、
二人は同時に逃げることになる。
黒帽子の人間は二人が同時に逃げたことから、
自分が黒だと確信し逃げない。


黒帽子が使われていない場合、
どの人間からも白帽子しか見えていない。
もし、自分が黒帽子をかぶっていると仮定するならば、
白帽子の二人は同時に逃げるはずである。
しかし、こう考えている瞬間に残りの二人が逃げないのは、
二人は二人自身が黒の可能性があると思っているからである。
ということは、自分と同じように白帽子二つを見ている状態である。
つまり自分の帽子は黒ではなく白である。

こういう思考過程から、誰もが白帽子しか見ていないことがわかり、
ある程度考える時間があったので
この場合は同時でなくても良いかもしれないが、3人が逃げる。


ただし、この考え方の前提条件として、どの死刑囚も
・この場で射殺されたくないと強く思っている。
・自分が白帽子だとわかった瞬間にすぐさま逃げる
・思考の早さ、思考過程、頭の良さは同じ。
でなければならない。

72 :□7×7=4□□:2007/03/27(火) 07:20:36 ID:+35VoQqM
上を少し掘り下げてみると、アイコンタクトともとれる解法もできそう。

黒帽子が二つの時、
白帽子が考える間もなくすぐさま逃げれば、
自分が黒だとわかる。これはべつに良い。

黒帽子が一つの時、黒帽子の人間は、
白帽子二人の様子を伺う為に、二人を注意する必要があるが
白帽子の人間は、他の白帽子の人間の反応だけを見れば良い。
つまり、黒帽子を注意する必要がないため、白帽子は互いに注意し合う。見つめあう。手と手がからみあう。息が絡みあい、そして(ry
白帽子が真っ先に逃げずに、自分の様子を探っているということは、
自分が白帽子だからだということがわかる。で、逃げる。

黒帽子がゼロの時は、
三人が三人とも二人を注意する状態になる。
自分が黒なら、白の二人は互いを注意し合うだけでわかるが、
自分にも注意を払っているということは、
自分の帽子も白である。で三人同時逃げると。

73 :□7×7=4□□:2007/03/27(火) 18:05:22 ID:dM6sx1K8
みんな死刑囚だからなあ。
どっちにしても死ぬのが確実だから一か八かで逃げたのさ(笑)

74 :□7×7=4□□:2007/03/27(火) 18:19:08 ID:FJJvLhQI
【問題】

5人の死刑囚と看守がいます
看守があるゲームを思いつきました

「5人に目隠ししてから白か黒の帽子をかぶせる(全員同じ色でもいい)
 階段に1段ずつ並ばせ目隠しをとる(自分より下の段の帽子はすべて見れる)
 一番上のやつから順番に自分の帽子の色を予測して言う(声は下の囚人も聞ける)
 当たったら助けてやり外れたら死刑にする(助かったか死刑かは下の囚人も分かる)
 なお不必要な行動で合図を送るなどしたら全員死刑にする」

5人は相談して“最低4人は確実に分かる方法”を考えつきゲームに臨みました

“最低4人は確実に分かる方法”とはどんな方法でしょうか

75 :□7×7=4□□:2007/03/27(火) 18:20:37 ID:FJJvLhQI
×確実に分かる
○確実に助かる

でした 訂正

76 :□7×7=4□□:2007/03/27(火) 19:56:34 ID:+35VoQqM
例えばこういうのでもいいのかな。
一番上の人間は、そのすぐ下の人間の色を言う。
2番目以降の人間は、上の人間が自分のを白だといわれていた場合
三番目の色が白なら「白!」、黒なら「白だ!!」のように若干語尾を変える。
もしくは「whtie」という風に英語を混ぜる。
これを繰り返せば、一番上の人間以外は確実に助かる。

どこまでが不必要な行動かわからん。

77 :□7×7=4□□:2007/03/27(火) 20:15:37 ID:FJJvLhQI
黒か白、2通りの情報しか得られないと考えてください
言い方を工夫して2通り以上の情報を与えるとかは無しで

不必要な行動をしてはいけないというのは要するに
黒か白、2通りの情報しか与えてはいけないということです

78 :□7×7=4□□:2007/03/27(火) 21:05:23 ID:dM6sx1K8
前に同じような問題出てなかったかい?

79 :□7×7=4□□:2007/03/28(水) 02:31:20 ID:XGX+c0x+
『助かったかどうかは下の囚人にわかる』というのは必要ないな。

80 :□7×7=4□□:2007/03/28(水) 10:05:45 ID:l9apGenx
まあこの手の問題では究極に近い問題だと思うが。

1番目は下の帽子の数を数えて、偶数なら黒、奇数なら白と答える。
2番目は自分から見える帽子の色と1番目の回答から自分の帽子の色がわかる。
以下同じ

81 :□7×7=4□□:2007/03/28(水) 10:07:59 ID:l9apGenx
ミスった…

白い帽子の数を数えて、の間違い。

82 :□7×7=4□□:2007/03/28(水) 11:26:53 ID:TT74Q9VD
なるほどなー。偶数と奇数か。
声の大きさとか間とかかと思ってた。

83 :□7×7=4□□:2007/03/29(木) 12:59:08 ID:HF60a3f7
論理パズルだっちゅーの

84 :□7×7=4□□:2007/03/31(土) 01:15:49 ID:uslHIkPz
見えている帽子の合計のmodを答える、って奴だったね。
黒・白の2色の場合に限らず、
N色でもできるということに感動した覚えがある。

85 :□7×7=4□□:2007/03/31(土) 05:30:15 ID:lPIL5XEC
詳しく。
modがよくわからん。

86 :□7×7=4□□:2007/03/31(土) 15:25:33 ID:tZX8iaJu
剰余だっけか。<mod
Nで割った余り。

87 :□7×7=4□□:2007/03/31(土) 15:32:02 ID:tZX8iaJu
例えば黒茶赤の3色の場合
便宜上黒=0
茶=1
赤=2として
1番目は見える帽子の色を合計し、3で割った余りに対応する色を答える。
2番目は見える帽子の色の合計を3で割った余りと1番目の回答の差が自分の帽子の色だとわかる。

88 :□7×7=4□□:2007/03/31(土) 18:12:52 ID:DSPxe1bf
>>83
出来たかもしれん。

89 :□7×7=4□□:2007/04/02(月) 21:36:34 ID:aCY6o+y+
>87
なんとなくしかわからんがそれでなんとかなるのか。
凄いな。剰余おそるべし。

90 :□7×7=4□□:2007/04/02(月) 23:36:55 ID:p2gvTPO9
この問題は前スレで見たとき本当に感動した
正確には答えにたどり着いたときだな

91 :□7×7=4□□:2007/04/05(木) 01:38:16 ID:iwuD93bV
誰か…解いて。。

○○○○○ひく○○○○をすると答えは33333になる

○には123456789のどれかが入る。
どういれたら答えは33333になるでしょう?

数字は一回ずつしか使えない。


92 :□7×7=4□□:2007/04/05(木) 11:21:35 ID:z3+Wt5am
意外と簡単だった

41268−7935=33333
十の位と一の位は入れ換えてもおk

93 :□7×7=4□□:2007/04/05(木) 19:54:51 ID:7qvpskZG
答えを出すまでの過程が重要なんでないの?

94 :□7×7=4□□:2007/04/05(木) 21:54:32 ID:z3+Wt5am
ンなこといってもなぁ…

147・258・369の組み合わせが基本
万の桁は3か4
桁借りを利用しないと全ての桁で3を作ることはできないので、まず万の桁に4をおく
残りの1・7と桁借りで千の桁に4を作れる
他2つの組に跨がって桁借り+3を作れる組み合わせとして2・9を百の桁
あとはそれぞれの組で差が3になるから十と一の桁におけばいい。

これでいいのか?

95 :□7×7=4□□:2007/04/06(金) 02:14:32 ID:FfVETFtB
【警告】
日本はカルト教団に支配されてしまいます。
選挙に行きましょう。

96 :□7×7=4□□:2007/04/07(土) 17:52:43 ID:fOGVczst
転載で申し訳ないですが、どうしても解説に納得がいかないので
誰か説明してください。

表と裏に○(○○)、表が○で裏が×(○×)表と裏に×(××)
が書かれた3枚のカードがあります。
このカードには、表や裏を見分けるための目印はありません。
男は、「この3枚のカードを渡すから、私に見えないよう1枚選んで、
テーブルの上においてください。上にするのは表でも裏でもいいですよ。
上を向いている面をみて、私がその裏を当てます。
もしあたったら10ゴールドください。はずしたら11ゴールド差し上げます」
といいました。
カードの表と裏には○と×が半々に書いてあるし
他に目印もないのに商売が成り立つのはなぜか。

という問題です。載っている解説を下に書きます。

97 :96:2007/04/07(土) 18:05:54 ID:fOGVczst
96の続きです。
解説には、

たとえば○が上を向いていたとします。
下が○であるのは、1枚目の表が上を向いていたとき、
1枚目の裏が上を向いていたときの2通りです。
一方、下が×であるのは、2枚目の表が上を向いていたときの1通りだけです。
つまり、上を向いているマークをそのまま答えれば、3分の2の確率で当たります。

と書いてあります。
次に、私の考えを書きます。

カードを選ぶ人間は、3枚のカードからどれを出すか選びます。
次に、そのカードが○×であった場合、表を出すか裏をだすか選びます。
この時点で、○○の○、○×の○、○×の×、××の×という4通りの
パターンができます。
そのため、たとえば上を向いているのが○だった場合、
○○の○か○×の○のどちらかであり、裏が○である確率と×である確率は
半々になると思います。

この問題がなぞなぞではなく論理だったため、
上の解説ではどうしても納得がいきませんでした。
どうか、わかりやすい解説をお願いします。

98 :□7×7=4□□:2007/04/07(土) 18:12:16 ID:La6Dc0YF
簡単に説明すると
「○○の前者の○」か「○○の後者の○」か「○×の○」の3通り

99 :□7×7=4□□:2007/04/07(土) 18:13:37 ID:lQOnrR9l
「この問題を知ってる人は絶対に二枚目を選ぶからじつは商売は成り立たない。」が正解。

100 :96:2007/04/07(土) 18:21:35 ID:fOGVczst
>>98,99
ありがとうございます。
わからないのは、なぜ○○の前者と後者を区別する必要があるのかです。
この問題ではつまり、○○のカードを出すとき、
表か裏のどちらの面を出そうか迷うってことですよね?

101 :□7×7=4□□:2007/04/07(土) 19:01:57 ID:xLHIpScW
カードを置く人間が
6通りの置きかたの中からランダムに選ぶとそうなるけど
4通りの置きかた(○○を置く・○×の○を見せる・○×の×を見せる・××を置く)だと1/2になる。

102 :□7×7=4□□:2007/04/07(土) 20:58:02 ID:GN4NFR2g
完全にランダムでカードを選ぶなら、○×関係なく
表と裏の模様が同じ確率が2/3。

103 :□7×7=4□□:2007/04/07(土) 23:51:51 ID:u43FBTTw
この問題「表と裏の模様が同じ確率が2/3」というのに納得できない人が多いんだよね
こういう問題なら納得できると思う

2・4のコイン 1・3のコイン 5・6のコインがある
3枚同時に投げてもっとも遠くに飛んだコインの表が
奇数ならやり直し
表が偶数で裏も偶数(表と裏の模様が同じ)なら勝ち
表が偶数で裏が奇数(表と裏の模様が違う)なら負け
このゲームの勝率は?

2の面が出れば勝ち
4の面が出れば勝ち
6の面が出れば負け
それ以外はやり直し

よって勝率(表と裏の模様が同じ確率)は2/3

104 :□7×7=4□□:2007/04/09(月) 15:41:13 ID:OAMtiGJk
・表も裏も○のカードを出す
・○×のカードの○を見せて出す
・○×のカードの×を見せて出す
・表も裏も×のカードを出す
この4つを同じ確率で選んでいるなら、その時点で3枚のカードを同じ確率で選んでるとは言えない。
ただ今回の場合人が選んでいるわけだから、こういう選び方をする人がいてもおかしくないわけだが。
で、こういう選び方をすると正答率は1/2になる。

カード3枚をよくきって1枚を無作為に取り出し、
更にコイントスをして表を見せるか裏を見せるか決める
…という手順で選ぶと、正答率は2/3になる。

この2つの違いは兄弟姉妹に喩えると解りやすいと思われ。
前者(確率1/2)は
・一人っ子の男子
・兄妹(または姉弟)
・一人っ子の女子
のうち1人を見てきょうだいがいるかどうかを当てる。
後者(確率2/3)は
・兄弟
・兄妹(または姉弟)
・姉妹
のうち1人を見てきょうだいが男か女かを当てる。

105 :□7×7=4□□:2007/04/19(木) 21:28:44 ID:UOb97klx
問題出すのは良いがきちんと答えも書け。
投げっぱなしじゃ意味ないだろが。

106 :□7×7=4□□:2007/04/20(金) 00:26:44 ID:/89kjsiJ
>>100
良い所を突いてると思うよ。
その解説は、いわゆる論理であって実戦的ではないからね。
>>99の言うように、現実的には客は1枚目と2枚目の○、もしくは
2枚目と3枚目の×で勝負し続けることになる。
10ゴールド対11ゴールドなら最終的にその商売は破綻する。

107 :□7×7=4□□:2007/04/29(日) 22:56:17 ID:LI427/qQ
「○○」「○×」「××」のカードの「置かれ方」をカウントするには、2種類ある。

(1)カード単位でカウントする
つまり、「どのカードが置かれているか」だけをカウントする。
「○○」「○×」「××」の3パターン。
この場合、「どちらの面が表になっているか(○が出ているか、×が出ているか)」は考えない。
裏のマークが表に出ているマークと一致する確率は、3パターン中2パターンなので2/3。

(2)カードの面単位でカウントする
こちらの場合は、「どのカードのどちらの面が表になって置かれているか」をカウントする。
「○○」の前の○、「○○」の後の○、「○×」の前の○、
「○×」のの後の×、「××」の前の×、「××」の後の×、の6パターン。
裏のマークが表に出ているマークと一致する確率は、6パターン中4パターンなので2/3。

結局どちらのカウントのやり方でも、表裏のマークが一致する確率は2/3。

>>97の後半や>>104の最初の段落のように、4パターンにカウントするやり方は、
この「まったく別個の」2種類のカウントのやり方をごちゃ混ぜにしただけで、
カウントのやり方としては成立していないということ。


108 :□7×7=4□□:2007/04/29(日) 23:46:12 ID:UeGz0ZqA
>>107
「確率的」には2/3という答えは既に沢山出ているし、カードを選択するのが
計算機なら実際に2/3になる。

だけどね、カードを選択するのは人という所がミソ。
だから>>99>>104などの言うことは、必ずしも間違いとは言えない。
このことを知っている人間と、このゲームをやってみれば分かるよ。

109 :□7×7=4□□:2007/04/30(月) 01:37:09 ID:zW4fgVgN
>>108
何が言いたいのかよく分からないけど
少なくとも4パターンカウントは間違いだよ
数え上げているものがそもそも違うから

110 :□7×7=4□□:2007/04/30(月) 01:57:46 ID:X8XWwrdn
みんなが分かりきってるコトを今更なに言ってんの?
つか、問題をよく見ろって。

111 :□7×7=4□□:2007/04/30(月) 02:00:04 ID:X8XWwrdn
>>109
>もしあたったら10ゴールドください。はずしたら11ゴールド差し上げます」
>といいました。
>商売が成り立つのはなぜか。という問題です

これな。成り立つと思うのなら、お前胴元やってくれ。

112 :□7×7=4□□:2007/04/30(月) 21:50:58 ID:TZpVorwT
     A           A〜Eの家があります
B                ヒントを参考に誰がどの家か推理してください
          C
  D
      E
1.イの家はロの家よりも東
2.ロの家はハの家よりも南
3.ハの家はニの家よりも東
4.ホの家はイの家よりも東
5.ハの家とニの家はホの家より南

この問題が解けなくて困ってます!だれかたすけてください!

113 :□7×7=4□□:2007/04/30(月) 22:37:09 ID:tNNd4mmu
どこかに極点があるね。

114 :□7×7=4□□:2007/04/30(月) 23:23:58 ID:VpKnBpEc
北が上向きじゃないなら成り立つ向きもあるけど定まらないね

115 :□7×7=4□□:2007/04/30(月) 23:53:09 ID:TZpVorwT
あ、すみません、上が北です。
雑誌の問題なんですが、わかりそうでどうしても矛盾が生じてしまって解けないんです(><)

116 :□7×7=4□□:2007/05/01(火) 00:21:41 ID:UNCliOgY
やっぱり極点があった。
しかも南極で、場所は5軒の中央付近でA寄り。
なお、極点からの距離がC<D<Eになる位置。

Aイ、Bロ、Cニ、Dハ、Eホ

117 :□7×7=4□□:2007/05/02(水) 03:08:02 ID:DcrDU6bn
極点があると図からより東かどうかってわからなくね?
>116があってるとは思うけど。

118 :□7×7=4□□:2007/05/02(水) 03:21:29 ID:mHwgqAEi
>>112
「クロスワードなどのパズル」スレでも回答しましたが、
これ解けませんね。
パズル推理ファン5月号の11番。

119 :□7×7=4□□:2007/05/02(水) 12:28:13 ID:NBGFSxgJ
つうか上が北といってる時点で極点の存在なんて考えてもしょうがないし
極点を勝手に定めていいなら条件に合うのは無数に出てくるので、合ってるも糞もない

120 :□7×7=4□□:2007/05/02(水) 18:41:08 ID:SzQdRG47
じゃあ無数に出せば?

121 :□7×7=4□□:2007/05/03(木) 15:30:43 ID:YaNNr0hL
>>112は世界地図
よってBはCの東だ!

122 :□7×7=4□□:2007/05/04(金) 05:35:57 ID:J+FUpKvQ
北極天に立ったら全周囲が南になるってドラえもんが言ってた

123 :□7×7=4□□:2007/05/05(土) 00:07:26 ID:rx7gmdt4
>>116
それだと2と5の条件に反してないですか?

124 :□7×7=4□□:2007/05/11(金) 12:20:19 ID:VdRZ8Y/s
クロスワードスレに、編集部に問い合わせした人の報告あったよ。

125 :□7×7=4□□:2007/05/12(土) 00:15:43 ID:HpPINO4h
出題のミスだったんですか・・・。
どうもありがとうございます。お騒がせいたしました。

126 :□7×7=4□□:2007/05/12(土) 01:21:47 ID:Q5bVd4WA

「はなくそおいぼれじんのうち」の間抜けなくだらない超能力気取り。ww


「はなくそおいぼれじんのうち」の間抜けなくだらない超能力気取り。ww


「はなくそおいぼれじんのうち」の間抜けなくだらない超能力気取り。ww


「はなくそおいぼれじんのうち」の間抜けなくだらない超能力気取り。ww


「はなくそおいぼれじんのうち」の間抜けなくだらない超能力気取り。ww




127 :□7×7=4□□:2007/05/25(金) 14:38:18 ID:hhY7Q6sI
tesuto

128 :□7×7=4□□ ◆86P92jPRJM :2007/06/27(水) 21:23:05 ID:tsyWkRdz
>>4
もも

129 :□7×7=4□□:2007/07/04(水) 16:31:38 ID:uwfVbaKL
射撃では100%の命中率を誇るゴルゴと、
60%の命中率を誇る次元、そして30%の命中率ののび太。
この三人が決闘をすることになった。

ルールは、好きな相手を狙って、三人が一発づつ順番にピストルを撃つ。
射撃の順番は、のび太、次元、ゴルゴの順番だ。
のび太が生き残る確率を最大にするためには、どう行動すればいいか。

130 :□7×7=4□□:2007/07/04(水) 17:42:09 ID:w5cq5KHl
>129

ドラえもんに秘密道具を出してもらう

131 :□7×7=4□□:2007/07/04(水) 22:08:54 ID:53rsTm60
俺の計算によると
ゴルゴを狙うと生存率30%
わざとはずすと生存率36%

132 :□7×7=4□□:2007/07/04(水) 23:23:06 ID:5cAj2l7/
> ルールは、好きな相手を狙って、三人が一発づつ順番にピストルを撃つ。

しずちゃんじゃね?

133 :□7×7=4□□:2007/07/05(木) 06:17:20 ID:DeyZNgLy
n;njg
n;nj
n;ng>n30+g70
j;njg>n;nj60+g;njg40
j;nj
j;jg>j60+g40
g:njg>n;ng
g;ng>g
g;jg>g
手番;残りの人
うちgはわかり易い
g:njg
のときgはjを狙うべき。
g:njg>n;ng >は必ずこうなるの意味
のびたと次元の二人残ったときの勝率がわかんね

134 :□7×7=4□□:2007/07/05(木) 06:47:49 ID:DeyZNgLy
n;nj>5/12n+7/12j
j;nj>1/6n+5/6j
j;njg>444/1200n+420/1200j+336/1200g
わざと外すのがいいな

135 :□7×7=4□□:2007/07/05(木) 18:39:12 ID:b1Rn8p0I
>>129
順番がそう決まっているのなら、のび太の採る行動は1つ。

「何時まで経っても撃たないコト」

いじょ。

136 :□7×7=4□□:2007/07/06(金) 21:35:54 ID:EXipQ6Vi
その発想はなかった

137 :□7×7=4□□:2007/07/06(金) 22:03:25 ID:KrGOI/6I
全員が「自分が生き残ることを考える」なら、全員外すのが
合理的だと思うけど、その認識が共有されている保証がないから
次元はGを撃たざるをえないですね。

138 :□7×7=4□□:2007/07/07(土) 02:44:22 ID:8hAXOjq3
「三人が一発ずつ打ったら終わり」なのか、「三人が一発ずつ、一人になるまで打ち続ける」
のかでも確率は違いそうだな

139 :□7×7=4□□:2007/07/07(土) 07:08:08 ID:AI81i27N
>「三人が一発ずつ打ったら終わり」
それじゃのび太はわざと外した時点で生存確定じゃないか

140 :□7×7=4□□:2007/07/07(土) 07:10:00 ID:AI81i27N
…ってよく考えたら
gで終わりなら必ずしもjを狙う必要はないわけか

141 :□7×7=4□□:2007/07/07(土) 07:48:40 ID:QFdjUzis
つか、3人のガンマンっていう有名問題なんだけどな・・・
このスレの出題者は、余計な条件を加えてしまったのだよ。

142 :□7×7=4□□:2007/07/07(土) 11:47:08 ID:8hAXOjq3
いやいや、おまいさんにご教授いただかなくても
三人のガンマンが有名なことくらい知ってるだろww

143 :□7×7=4□□:2007/08/08(水) 02:18:01 ID:2M0cHgza
論理クイズあまりやったことない素人だからよくわからないんだが、
少し前に話にでてたよくある問題にこれも入るのかな…
もしそうならスルーしてくれ


次の四人はそれぞれうさぎ村かねこ村からきました。
同じ場所から来た人に関する発言なら真実、そうでなければ嘘です。

A「BはPからきました」
B「CはQから来ました」
C「DはRから来ました」
D「AはSから来ました」
(PQRSはそれぞれうさぎ村かねこ村)

四人はそれぞれどこから来たのでしょう。


村の名前は…何も思いつかなかったらんだ。


144 :□7×7=4□□:2007/08/08(水) 02:19:58 ID:2M0cHgza
ごめんsage忘れ

145 :□7×7=4□□:2007/08/08(水) 04:26:03 ID:I1rNannG
A=P
B=Q
C=R
D=S

146 :□7×7=4□□:2007/08/08(水) 12:50:39 ID:2M0cHgza
>>145
正解
やっぱり簡単だったかな…

147 :□7×7=4□□:2007/08/10(金) 00:52:20 ID:wo8Ysgiw
>>143
の条件で
Aはねこ村から来た。
Aは嘘をついている。
嘘をついた人の数とねこ村から来た人の数は同じ。

Cはどこから来たか

148 :□7×7=4□□:2007/08/16(木) 02:26:55 ID:RhZamHcH
18個のおもりが軽い順番に並べられている。
新しく2個おもりが手に入ったので、元あったおもりの列の途中に
軽い順番で正しい位置に入れたい。

天秤ばかりを9回だけ使ってやってみて。

149 :□7×7=4□□:2007/08/16(木) 17:55:24 ID:4Z/Ew8gv
>>148
とりあえず、最初からある18個+新しい2個の「おもり」が
全て違う重量なら可能ですね。
あー、同じのがあっても可能だーね。並びはともかく。

150 :□7×7=4□□:2007/08/16(木) 18:04:18 ID:4Z/Ew8gv
と思ったけど勘違い。練り直してみます・・・

151 :□7×7=4□□:2007/08/17(金) 08:49:20 ID:M/OdtpL+
なるほど。10回あれば必ずできるが、9回だと難しいな。
組み合わせるような形も見えてこないし。

152 :ナントリン ◆NUMTRINDio :2007/08/17(金) 17:23:07 ID:ipJwxmQ9
「お前は今までに使った天秤の回数を憶えているのか」
……みたいにややこしい形になってしましましたが、こんな感じ?
ttp://love6.2ch.net/test/read.cgi/aastory/1117028351/699

153 :□7×7=4□□:2007/08/17(金) 17:58:22 ID:A/8NZNUE
>>152
GJ

154 :□7×7=4□□:2007/08/20(月) 08:30:08 ID:zmGiICwd
>>152
>      LをDEFGHIJと比較するのに3回
>      HをKLMと比較するのに2回
ここ間違ってるよ。
たとえば、Lが5,6の間になったら、Hは6〜14と比較しないといけない。

155 :□7×7=4□□:2007/08/20(月) 18:00:51 ID:SIliKMvz
>>154
>4回目 LがCより重く、HがNより軽い場合、LとKを比較し、LがKより軽い場合、
152さんの考えで合ってるよ。

156 :□7×7=4□□:2007/08/20(月) 18:24:19 ID:MTS0qMLQ
いや、>>154のほうが正しいと思う

157 :□7×7=4□□:2007/08/20(月) 19:27:56 ID:SIliKMvz
んだね。やっぱ無理かー。

158 :ugo ◆iCD8edvlL6 :2007/08/30(木) 20:24:05 ID:R9xHQfE+
いまさらなんだけど、>>2の問題ってさ、コップの形がちがっても
感覚的じゃなくて正確に分けることができるでしょう?
一つのコップを計量カップ代わりにして、そのコップに満タンにいれたのを
他のコップについでいく。あふれたコップがあったら、今度はそのコップを
計量カップにしてついでいく。この繰り返しであふれず最後のコップまで
注げた時点で、すべてのコップに同量のジュースが注がれているでしょう?

これじゃダメなのかな?

159 :□7×7=4□□:2007/08/30(木) 20:45:32 ID:L9L5VCq4
4つのコップがあって、それぞれ容量が3,4,5,6だとすると、
3のコップを計量カップ代わりにして、とりあえず全部に3ずつ均等に
注ぐことができるってこと?

そうだとするとその方法って、
「計量カップ代わりのコップの容量」×「人数」の倍数のジュースしか
分けることができなくない?(上の例では12の倍数)
ジュースが8しかないときとか、どうやって分けるの?

160 :□7×7=4□□:2007/08/30(木) 21:05:50 ID:WJMNz78i
その分け方って、ジュースがそれなりの量ある時しか使えないよね?

161 :0644:2007/08/30(木) 22:53:37 ID:8+NGq4G+
ジュースの量が少なければ、3のコップの半分量を量って分けてはいかが?
もっと少なければ、コップに目印付けて量る。

162 :□7×7=4□□:2007/08/30(木) 23:03:18 ID:V2QCzola
>>161
コップと言われて普通のコップを想像してるならそれは間違い。
花瓶のように、間口の異様に狭い陶器でできた歪なコップだったらどうするの?

163 :0644:2007/08/30(木) 23:18:39 ID:8+NGq4G+
>>162
全部そんなんだったらお手上げw

そんなコップ(?)で真剣にジュースを分けようとしてるトコ想像すると微笑ましい。

164 :□7×7=4□□:2007/08/31(金) 01:21:11 ID:X3Ny9TPm
この問題はそういう微笑ましい状況を想定した問題なのだからしょうがない

165 :0644:2007/08/31(金) 13:15:04 ID:e4AtmeWp
ペットボトルの蓋を計量カップに…

166 :□7×7=4□□:2007/08/31(金) 13:30:29 ID:LLuRI1Af
大変心苦しいが、その蓋より少ない量はどうするのかと問わねばなるまい

167 :□7×7=4□□:2007/08/31(金) 16:40:08 ID:+cB8I2Pk
とりあえず論理パズルというのが何かを分ってないね。

168 :□7×7=4□□:2007/09/01(土) 02:01:41 ID:SjJC6OED
いや、そうやって「論理パズルの常識」にとらわれることのほうが
よほど非論理的に違いない

169 :□7×7=4□□:2007/09/01(土) 06:34:37 ID:Gfw44lUX
>>168
常識じゃなくてルールな
論理パズルじゃとんちじゃないんですよ

170 :0644:2007/09/01(土) 20:40:46 ID:dG1v00gq
>>2の問題は、「全員が納得できる分け方」であり、「平等に」とは言ってないし、「全員ができるだけたくさんジュースを飲みたがってる」とも言ってない。

全員がたくさんジュースを飲みたがってるという考え=常識

常識≠ルール(>>169
>>2の問題は論理パズルのルールに則っていない

論理的に説明できたでしょうか?
人の心のありようが解答に反映される時点で、論理的ではないし、一般化もできない気もしますがf^_^;

171 :□7×7=4□□:2007/09/01(土) 20:56:41 ID:fKPhL4qI
論理パズルにおいて人間は常に自分の取り分が最も多くなるように行動するというのは自明のルール

172 :□7×7=4□□:2007/09/01(土) 21:46:19 ID:8fjSJ0Ki
子供の育て方的な知識で
親がジュースを分けると大抵どっちが多いかでケンカをしちゃうけど
一人にジュースをわけさせてもう一人にジュースを選ばせれば双方納得するらしい。

173 :□7×7=4□□:2007/09/01(土) 21:54:31 ID:/VvJuUmQ
変なのが沸いてるな・・・

174 :□7×7=4□□:2007/09/01(土) 22:59:39 ID:uZOkgHg2
確かに問題文には言葉が足らない部分があるかもしれない。
でも、「平等に分けること」とか「なるべくたくさん欲しがること」を明記しなくても、
なんらかの形で平等に分けざるを得なくなると思う。

ここで、平等な分け前より少なくていいと思っている人をMと呼び、
平等な分け前より多くなきゃ嫌(なるべく多く欲しい)と思っている人をSと呼ぶとする。

1.Mの人だけで分割する場合
問題なく全員が欲しい分をもらえるので、全員納得できるように分けることができる。
欲しい分だけ各自で確保すればよい。(分けた結果、余りが出る)

2.Sの人だけで分割する場合
なるべく平等に分けることが、相手の不満を招くことなく(自分を除く全員が納得)、
自分の取り分を最大にできる(自分が納得)ので、平等に分けるのでOKとしても、
その方法が問題となる。

3.Mの人とSの人が両方いて分割する場合
Sの人は、Mの人が放棄した分だけN等分したときより自分の取り分が増えるので、
Mの人の取り分に対して不満はない。
したがって、あらかじめMの人の分は取らせておいて、残りの分について、
改めてSの人だけで分割すればよくて、結局2.と同じ問題になる。

>>17などの解答で、当初から全員の取り分を1/Nとしているのは、
分け方が問題となるケースが実際的には2.のケースだけだからだと思う。
でも、問題文には>>170が言うように、それぞれの要求する量について書かれていないので、
1.や3.のケースにも対応した解答をする必要がある。

調べたところ、バナッハ=クナスター解とかいうのがあるらしくて、この問題の場合だと
(1)誰でもいいので1人が自分の分をコップに注ぐ
(2)他の人はそれを見守り、各自が希望する量よりも多く注いだと思った時点で注ぐのを止める
(3)止めた人がそれをもらい、自分の希望する量までジュースをペットボトルに戻して1人決定
これをN-1回繰り返す
とすれば、N等分より少なくていい人の分まで反映した形で分けることができると思う。

なので、>>2の問題ではなく>>17の解答に問題があったのではないかと思う。
変なこと言っていたらスマソ

175 :□7×7=4□□:2007/09/02(日) 09:05:41 ID:XMCavdTc
>>170
なんか的外れなこと言っとるな
お前が論理パズルを分かってないと言われるのは
勝手にコップを都合の良い形に想像したり
勝手にペットボトルの蓋をもってきたりするからだよ
もっと浅いレベルの話だ

176 :0644:2007/09/02(日) 12:54:42 ID:4+I+M5qz
なるほど。そのようなルールがあるとは知りませんでした。勉強してきます

177 :□7×7=4□□:2007/09/02(日) 21:21:16 ID:IaX4rvsy
軽い問題でもやって落ち着け

クラスのみんながあるルールに従い輪になります。
ルールとは3人並んだとき真ん中の人のテストの点が両端の二人の点の平均になることです。
例: …80点|60点|40点|50点|60点…

さて、10人で輪を作ることはできるでしょうか?

178 :□7×7=4□□:2007/09/02(日) 21:44:18 ID:Qas1pbE3
できる。
簡単な例は全員が同じ得点だった時。

っていうか、その例は60-40-50がおかしいね。

179 :□7×7=4□□:2007/09/02(日) 22:02:11 ID:IaX4rvsy
はい正解。
みんなの点がバラバラだと最高得点と最低得点が必ず出現するからその人が輪に入れない
=輪は作れない という解答が出るのを狙った問題だったけど簡単すぎたかな。

60-40-50のところは素で間違えてたよ。

180 :□7×7=4□□:2007/09/02(日) 22:04:08 ID:A6TebH/S
簡単な例というか、「みんな同じ点のときのみ輪が作れる」じゃない?

181 :□7×7=4□□:2007/09/03(月) 00:26:48 ID:LqF+VDk6
輪でなく一列に並ぶことを考えると点数が大きい順か小さい順になるからな

182 :□7×7=4□□:2007/09/03(月) 21:10:06 ID:xkOcnUPh
究極の選択
「カレー味のうんこ」
「うんこ味のカレー」
どちらを食べる?

これは究極の選択かどうか?

183 :□7×7=4□□:2007/09/03(月) 21:17:17 ID:sENRcf27
どう考えても「うんこ味のカレー」。
うんこ食うなんて病気か。

184 :□7×7=4□□:2007/09/03(月) 21:19:05 ID:xkOcnUPh
>>183

回答になっていない

185 :□7×7=4□□:2007/09/03(月) 21:20:44 ID:c7ZCtjO6
究極の選択ではない。
なぜなら
どう考えても「うんこ味のカレー」。
うんこ食うなんて病気か。

186 :□7×7=4□□:2007/09/03(月) 21:23:04 ID:xkOcnUPh
>>185
まぁいいでしょう

187 :□7×7=4□□:2007/09/03(月) 21:49:12 ID:MGYjx6Hu
この選択が究極と呼ばれる所以は、言うまでもなく「うんこ」にある。
どちらを選んでも、「うんこ」体験を強いられる。
しかし、同程度の苦痛を強いられるとしても、「うんこ」が究極の苦痛を
もたらすといえるのか。これは自明ではない。
したがって、およそ人間にとって、この「うんこ」体験がはたして
究極的な苦痛となりうるかが問題となる。

でも面倒だから詳しい議論はすっ飛ばして、
ゴキブリでも同様の苦痛をもたらすような気がするので、
「うんこ」の選択は究極ではない。

188 :□7×7=4□□:2007/09/03(月) 21:51:16 ID:MGYjx6Hu
いや、ゴキブリは見た目からして食べ物じゃないからだめか・・・

189 :□7×7=4□□:2007/09/03(月) 22:12:43 ID:zPTXeUMv
もまいらも知らず知らずにうんこ食ってるんだが。

190 :□7×7=4□□:2007/09/04(火) 01:01:45 ID:1NeC5Loh
うん、こくったことあるよ

191 :□7×7=4□□:2007/09/04(火) 01:16:29 ID:daQvuOOR
>>189
それは自覚している

192 :□7×7=4□□:2007/09/04(火) 22:04:24 ID:A8aQkcUL
誰かパズルキボンヌ

193 :□7×7=4□□:2007/09/05(水) 14:42:25 ID:pcsVyYX6
脱出ゲーム voice
ttp://sirataman.blog.shinobi.jp/Entry/66/

この中で論理パズルでてた

総当たり形式の相撲です。
対戦表を埋めなさい。

A「C君より順位が下で悔しい」
B「戦績はバラバラで同順位の人はいないよ」
C「E君には勝ったけどF君には負けちゃった」
D「僕は3勝2敗でした」
E「A君には勝てました」
F「ちぇっ、優勝できなかった」

全部じゃなくCのだけ解ればいいっぽい

194 :□7×7=4□□:2007/09/05(水) 16:39:48 ID:Y6Uaa5+D
この、童貞野郎Dチーム

195 :□7×7=4□□:2007/09/05(水) 18:05:37 ID:1z8JypWW
C君はA/E君に2勝、あと3敗。全勝優勝はB君。
F君が準優勝なのは偶然かな?

196 :□7×7=4□□:2007/09/05(水) 18:12:07 ID:wc7sEuYl
めんどいから表は省く。

まず、A〜Fのコメントから分っているトコを埋める。
Bのコメントから、A〜Fの勝敗は次の6つが1つずつあるコトに。
 5勝0敗、4勝1敗、3勝2敗、2勝3敗、1勝4敗、0勝5敗
この中で全勝(優勝)するコトが可能なのはBのみ。
ココまでで、4勝1敗の可能性があるのはFのみとなり、
自動的にDの星取りが埋まり、同時にEの星取りも埋まる。
同時にAのコメントから全敗はAとなり、全て埋まる。

197 :□7×7=4□□:2007/09/05(水) 20:47:19 ID:KipNv26J
>>196
全勝するコトが可能なのはBのくだりまではわかるんだが

4勝1敗の可能性があるのはFのみからがわからぬ……

198 :□7×7=4□□:2007/09/05(水) 21:42:44 ID:wc7sEuYl
>>197
まず、A〜Fのコメントから分っているトコを埋める。
Bのコメントから、A〜Fの勝敗は次の6つが1つずつあるコトに。
 5勝0敗、4勝1敗、3勝2敗、2勝3敗、1勝4敗、0勝5敗

  A  B  C  D  E  F
A − ? ? ? ● ?  2敗以上でC以下の順位
B ? − ? ? ? ?
C ? ? − ? ○ ●
D ? ? ? − ? ?  3勝2敗
E ○ ? ● ? − ?
F ? ? ○ ? ? −  1敗以上している

この中で全勝(優勝)するコトが可能なのはBのみ。

  A  B  C  D  E  F
A − ● ? ? ● ?  3敗以上でC以下の順位
B ○ − ○ ○ ○ ○  5勝0敗
C ? ● − ? ○ ●
D ? ● ? − ? ?  3勝2敗
E ○ ● ● ? − ?
F ? ● ○ ? ? −

ココまでで、4勝1敗の可能性があるのはFのみとなり、
以下略

199 :□7×7=4□□:2007/09/06(木) 00:51:06 ID:S1AQaAFM
CとEが言っているのか個々の戦いじゃなく順位の勝敗じゃないの?

200 :□7×7=4□□:2007/09/06(木) 20:38:51 ID:jN+zBMnB
>>199
そう仮定しても、全員の勝敗が違う場合には
順位の勝ち負け=対戦の勝ち負け
になるので変わらない

201 :□7×7=4□□:2007/09/07(金) 09:55:46 ID:wDJaOfMe
>>182
どちらも世の中に存在しないし、存在しても無意味なので、そんな選択にもなんら意味もはない。
作りたいなら作ってみろよ。
ただし、「カレー味のうんこ」にカレーを入れるのは許すが、「うんこ味のカレー」にうんこを入れるのは反則だぞ。

202 :□7×7=4□□:2007/09/07(金) 22:40:02 ID:mBQ2Rfon
>>201
味の大半は香りなので香料いれりゃ出来ないこともないようなきがする

203 :□7×7=4□□:2007/09/08(土) 02:10:18 ID:FXcEYL/q
うんこ味のカレーを作って写真を公開してた人がいたと思う

204 :□7×7=4□□:2007/09/08(土) 19:36:35 ID:6+Z5MWcC
うんこは苦いと聞いた

205 :□7×7=4□□:2007/09/08(土) 23:50:48 ID:7GmoH+fr
うんこ味のカレー作る奴はうんこの味を知ってる。
味見して頷いたりなんかしてね。

206 :□7×7=4□□:2007/09/17(月) 01:50:02 ID:N4sba0I7
おれなら、選択しない。
ってか、どっちも食えないんじゃないか? 体が拒絶反応示して吐くだろ多分。
それに、どっちもカレー、ウンコと付いているからにはカレー成分とウンコ成分が入ってるわけだ。分離は不可能だろ。
厳密に答えると、「どっちを口に入れようが、どっちも喉を通らない!」


207 :□7×7=4□□:2007/09/17(月) 01:59:56 ID:N4sba0I7
17は違う。29指摘もあるし、他にも問題がある。
54 ケース1だけしか見てないが、間違ってる。
5は問題ない。正解。

208 :□7×7=4□□:2007/09/17(月) 12:04:44 ID:PVqWItj+
「全員が納得いくように」というのを
「全員が1/N以上はあると思ってる」と解釈するか
「全員が他人より多いと思ってる」と解釈するかによる
前者の解釈なら>>17は正解

209 :□7×7=4□□:2007/09/17(月) 15:34:18 ID:N4sba0I7
>>208 「全員が1/N以上はあると思ってる」〜の解釈なら>>17は正解

17の別の問題点をいうと、
例えば、丁度1/Nに達したと、ある奴が真っ先に思ったとする。でも誰も他の奴がストップと言わないから、もう少し待って鯖をよもうときめこむ。そんな奴は他にもいるかもしれない。すると1秒後に他の奴がストップと先にいってしまったとする。
鯖をよんでストップかけようとした奴等は、他の奴に1/N以上持っていかれたと思い、それはつまり、残りを例え軽量カップでN-1等分しても最初の奴の量より少なくなることを意味する。

だから、「全員が納得いくように」の解釈のしかたに関わらず、17には問題がある。ま、初めて読んだ時、発想は凄いと思ったがね。

210 :□7×7=4□□:2007/09/17(月) 22:25:41 ID:UJkV23KU
ただ、同時に発声した時もめる可能性はある。

211 :□7×7=4□□:2007/09/17(月) 22:46:32 ID:PpS3qYAF
とりあえず適当に分ける。
その後全員にこれでいいか聞き不服を言う人がいたら全員飲んじゃダメ。
不服言った人は一番多いと思う人を指名して指名された人は分けてあげる。
分けて貰ったあとも不服ならコップを入れ替える。
(コップを入れ替えたらこれ以上不服はいえない)

全員が納得すればいただきます。

212 :□7×7=4□□:2007/09/18(火) 03:33:29 ID:wADngE4b
>>17は合ってるよ。複数の人が同時にストップかけたらジャンケンで一人に決めることにすればいい。
そりゃ『現実に』やれば、分けたあとで不平を言う奴は出るかもしれない。
でもこれはパズルだろ?理論的なもんだろ?
>>17に問題あると言ってる人は『各人は出来るだけ多くジュースを取りたがる』なんて条件を勝手に想定してるんじゃないか?

213 :□7×7=4□□:2007/09/18(火) 09:49:27 ID:jBaIssMo
>>17って分けたあと不平を言う者が絶対に出ないという前提がないと正解にならないじゃん。
>>17は合ってると言ってる人は『公平な分け方をすれば不平を言う者は現れない』なんて条件を勝手に想定してるんじゃないか?

214 :□7×7=4□□:2007/09/18(火) 19:57:03 ID:kkAtsPcs
>>213
だからさ・・・もう一回>>208よめ

215 :□7×7=4□□:2007/09/18(火) 20:24:00 ID:cx9NQApz
>>123
それだけじゃないが、とりあえず、乙

ま、俺等はそれ(17は不正解)が分かってるからそれで良しとしようぜ。馬鹿の壁を破れない者たちのおかしな反論につきあっても堂堂巡りで疲れるだけだし。

それよか、211とか174のバナッハなんとかの方が、今は興味をそそる。よくできてんじゃない?


216 :212:2007/09/19(水) 03:44:11 ID:dYbqPNpv
>>213
>>17のやり方で分ければ全員が「自分は1/N以上もらった」と思えるよ。論理的にはね。
不平がでるかもと書いたのはあくまでも実際にやってみた場合のことね。
例えば2人のときの分け方、『1人が2等分だと思うように分け、もう1人が多いと思う方を取る』
これだって実際にやってみれば納得しない可能性は充分ある。
分けた後で、「ん〜、やっぱりあいつの方が多い気がする!俺が分けたのは2等分じゃなかった!」なんてあり得る展開だ。
でも、だからといってこの分け方が間違ってる訳ではない。論理的には全く正しい。
>>17についても同じこと。論理的に全く正しい。


217 :212:2007/09/19(水) 03:54:02 ID:dYbqPNpv
今日はもう疲れたんで続きはまた明日書きます。
そうそう、>>17否定派の人に>>209の指摘についてどう思うか聞きたい。
的外れな指摘だと思う?もっともな指摘だと思う?

218 :□7×7=4□□:2007/09/19(水) 21:58:30 ID:GY/55VUm
>>215
>ま、俺等はそれ(17は不正解)が分かってるからそれで良しとしようぜ
だっさい自演だなw


219 :□7×7=4□□:2007/09/19(水) 22:45:34 ID:3JugXhLd
>>209の指摘はもっともだと思うよ。
例えば1000mlを5人で分ける場合
1〜3人目が200mlよりちょっと多いぐらいもらったら残りはあきらかに400ml未満。
4,5人目が400ml未満のジュースを半分に分けることで「妥協」するか
5人目があきらかに200ml未満のジュースを「押しつけられる」かしかなく
どちらにしろ全員「納得」はできない。
逆に4,5人目が納得できるように早めにストップする場合は1〜3人目が「妥協」しなければならない。

220 :□7×7=4□□:2007/09/19(水) 23:01:26 ID:gsqd3R7Z
>>219
いや、それは違うだろう
それだと「全部くれなきゃやだー」という人がいれば解なしになってしまう

各人は200mlずつ取ろうとするんだよ
ただしコップがゆがんでいるのでどこが200mlかの統一した基準がない
各自が200mlだと思った量を取れればそれで満足
ただし成り行きで200ml(と思う量)より多くなるのは構わないと
そういう話だろう

221 :□7×7=4□□:2007/09/20(木) 00:25:17 ID:v1E10oNk
「各人は200mlずつ取ろうとする」はまぁ認めよう。
だが、「各人は目測を正確にできる」は認められないぞ。

例えば4人は210mlを200mlだと思っていて一人は250mlを200mlだと思っていたらどうする。
1〜4人目がおよそ200ml取っていくところを見て「みんな謙虚だなー」なんてのんきに構えてたら
5人目の分がすんごい少なかったなんてことにもなりうる。
>>17案は分けたあと再分配できないってのが最大の問題点なんだよ。

222 :□7×7=4□□:2007/09/20(木) 01:25:13 ID:Q7xw0sHM
いや、目測が正確にできないからこそこの問題は成立するのであって
目測が正確にできたら200mlの時点で一斉に手を挙げるから意味ないよ
それかチキンレースになるかだね

各人の目測は客観的に正確ではないけど、自分の中では揺らがない
そういうことだと思うんだよな

223 :212:2007/09/20(木) 05:35:52 ID:jayxwOH/
>>209は全く的外れですよ!俺ならこう突っ込みます。

「いったい>>17のどこに『1/Nだと思ってもすぐには止めず、他の奴らの様子をうかがう』なんて書いてるんですか?」
勝手に>>17のやり方を変えて、問題が生ずるから>>17には問題がある?おかしいことが分かりませんか?

あと、その後のやり取りを読んだけど少し不安になってきました。
一応、念のために書いておきますが、

>>17のやり方で1000mlのジュースを5人で分けました。
その結果、5人の取り分は 30ml、90ml、130ml、200ml、550ml となり、全員納得しました。』

これはあり得ますよ?「そんなこと分かってる!」って言ってくださいよ?

次回は俺が>>17は正しいと思う理由を説明します。


224 :□7×7=4□□:2007/09/20(木) 09:48:37 ID:v1E10oNk
「偶然解決できることもあるからこれは正解」って言いたいの?
じゃあ「偶然解決できないこともあるからそれは不正解」と言うまでだよ。

不確定要素がどんな状態でも解決できる答えじゃないと「正解」とは認められない。

225 :□7×7=4□□:2007/09/20(木) 12:03:03 ID:b/Sg2PM+
【3者分割問題に関して】

本当の正しい解答を知っているんだが、問題の本質に到達するまえに混乱してないようなので一石投じてみまーす。

まず「納得」によって、この問題は二種類に分かれるので、それを説明します。

(1) 単純平等でOK の場合

単純平等とは、n者分割において
「俺は少なくとも(俺の尺度で)全体の1/nをゲットしたぜ!」
と思えればOK,というパターン。

この問題ならば、実際の量に関係なく>>17の方法でOK。
極端な話、3者分割の場合に、
あまりにBとCの量的感覚が節穴すぎて、Aが全体の99%を取ることになってもBとCからは文句は出ない。
むしろAの事を「おいおい、あいつ明らかに1/3以下なのに取ってるよ、アホやで」
と思う。
量的に平等ではないが、個人の感覚において「少なくとも1/nはゲットした」という感覚は残るから。

この板では(1)の考えが主流なようなので、これで終わらしてもいいんだが、
この問題は実はもうちょっと面白いのだ。


(2) 無羨望平等(完全平等) の場合

無羨望平等とは、分割が終了したときに誰の取った量も自分より多いと思えない、という平等である。
この視点だと、>>17の方法はNG。

単純な例でいくと、
Aが最初に1/3(だとAが思う量)を取る。
Aはもちろん「自分の量が1/3」には納得している。
そのあとBとCが2/3を分けることになるのだが、この分割に対しAは参加できない。
BとCが納得して2/3を1/3ずつに分けることは可能だが、この分割にAは納得できない。
極端な例だと、Cがアホだった場合に極端にCの取り分が少なくなることがある。

Aは、「オイ!俺は1/3以上はあるけどBの量は明らかに俺より多いやんけ!」となりうる。
(無羨望においては、自分が1/3量を確保しても最終的に満足できないことに注意)。


さて、こっからが面白いのだが、この無羨望平等においても分割の方法はある。
ちなみに(この板で出てくる”解答”に比べると)かなり複雑。
でも完全に論理証明できるエレガントな解法があるのだ。

ちなみに、これはn者分割の場合に一般化することはできないので注意。
4者分割は大学生の論文レベル。
5者分割は成功した奴いるのかな?





226 :□7×7=4□□:2007/09/20(木) 12:06:22 ID:b/Sg2PM+
長文スマソ
あと訂正

×混乱してないようなので
○混乱しているようなので


227 :□7×7=4□□:2007/09/20(木) 18:07:58 ID:6C0DbMhF
>>221
およそ200mlじゃなくて必ず200ml以下になる
なぜなら200mlになったと思ったら手を挙げてるはずだから
だから5人目は4人とも200ml以下しかとってないと思ってるはず
それは言い換えれば残りは200ml以上あると思ってるはずってことだ

あるいははなから「コップが200ml以上になったらストップ」じゃなく
「残りが800(600・400・200)mlになったらストップ」と考えてもいい

いずれにしろ>>221のようなことは起こらん

228 :□7×7=4□□:2007/09/20(木) 18:51:54 ID:1XFqQ+d2
Aが1つのコップに注ぐ。
Bが1つのコップに注ぐ。
CがA,Bが注いだコップか残りを選ぶ。
Bが残った2つの好きな方を選ぶ。
Aは一番最後に残った物を手にする。

例えばペットボトルに入っているのが600ccのジュースだった場合、
Aが注ぐのは次の3パターン。
a)200cc未満
b)200ccジャスト
c)200ccより多く300cc以下・・・300ccより多く注げば、その時点でBが異議を唱える。

a),b)の場合、Bは残りを半分だと思うように分ければいいのでB,Cとも不満なし。
c)だった場合は、Aが注いだ量と同じだけ注げばよいのでB,Cとも不満なし。

ただしこの方法だと、一番最初に注ぐ番だけには誰もなりたくないはず。
つまりこの問題は誰が注ぐのかが焦点。プレーヤーが注ぐのであれば不満は
必ず出る。一番最初に注ぐ人間は、どうやっても得をすることができないからね。
プレーヤー以外の第三者が注ぐのであれば、>>17は正解の1つだと思うが、
ストップを掛けるプレーヤーが複数出れば延々と繰り返すことになり、終わらない。

229 :□7×7=4□□:2007/09/20(木) 19:47:02 ID:v1E10oNk
>>225,227
たしかに最後の人は"自分の前の人が注ぎ終わった直後まで"ボトルに目的量以上残っていると思っているだろうね。
でも実際にコップに注ぐと自分の思っていた量より明らかに少ない。
ここで自分の目測が間違っていたことに気づくわけだけど
間違いに気づいたあとで文句を言わないのはなぜ?
ルールだから仕方ないと「あきらめる」からか
俺の目測は間違ってたけどみんなは正しかったはずだからこれが本来の量なんだと「自分に言い聞かせる」
どちらにしろ「納得」とはいえないと思うんだけど。

230 :□7×7=4□□:2007/09/21(金) 00:48:28 ID:gafmT0/7
> (1) 単純平等でOK の場合
> この問題ならば、実際の量に関係なく>>17の方法でOK。

A,B,Cが1/3に達したなと思える量が
それぞれ3/5,4/7,5/9だった場合は?

231 :212:2007/09/21(金) 06:03:50 ID:CEVyhOfT
俺が>>17は正しいと思う理由は、>>17のやり方で分けるとき

@ ストップかけてジュースをもらった奴にとって、もらったジュースは全体の1/Nである。

A まだジュースをもらってない奴にとって、残りのジュースをもらってない奴らの頭数で割れば全体の1/N以上である。

という2つが成り立っているから。
この2つが成り立つなら、全員が「自分は1/N以上のジュースを手に入れた」と思える。
だから>>17は正しい。ただそれだけ。



あと投稿を読んでみて気になったのは
「1000mlのジュースを5人で分けるとき...250mlが全体の1/5だという感覚の奴は...」
「3人で分けるとき、Aにとっての1/3が全体の3/5だったら...」
という感じの書き込み。(うろ覚えなんで細かいとこ間違ってたらゴメン。)
サラッと書いてるけど、これまたおかしな話ですよ。
眠いんで続きはまた次回に書きます。

ちょっとだけ。上のような感覚の奴にジュースをそれぞれ5等分、3等分させたらどうなるんでしょう?

232 :□7×7=4□□:2007/09/21(金) 09:39:29 ID:aZoFa3Nk
極端な話
目測が全然できないバカ5人が1000mlのジュースを>>17の方法で分けようとする。
1人目がボトルの中身を全部出した。だがこれでも200mlより少ないと全員が思ってる。(全員納得しない)
自分の目測が間違っているなんて考えもせず「このボトル1000mlどころか200mlも入ってないじゃん」ということもあり得る。

つまりこの問題の目標とするところは 全員200ml以上取れたと思うこと ではなく
全員同じ量だと思うこと なのでは?

233 :225:2007/09/21(金) 14:24:53 ID:O8NIDbYg
225です

>>229
ですから「平等」とか「納得」のルールが二種類あって、どちらを採用するかによるんですってば。
それを説明したつもりんだけどな。


>>225で言った
【「単純平等」を「納得」とするルール】
なら、他人がいくら得ていようが(=他人のが自分のより目分量で多く見えようが)、「自分が1/nを取りさえすれば問題ない(単純平等)」ので、「納得」ってことになるの。
自分の取り分を取った瞬間、あとはどうでもいい!ってドアを開けて出て行くようなイメージしてもらうとわかりやすいかな?


で、たぶんそれで>>229のような疑問を感じる人は、たぶん頭の中で

自分の取り分をとる→他人がとる→分配終了→回りを見渡してみる

みたいな流れを頭の中で考えてるんでしょうな。

それは【「無羨望平等」を「納得」とするルール】なのですよ。
確かに、こっちの方が人間的感覚には近いからそう感じるひと多いだろうね。

「平等」を「全員が同じ量だと思う」っていうならこれだし。
※「全員が」同じ量だと思うなら「全員の」分配を最終的に終えて、お互いの取り分を確認しないといけないからね


>229が>17を不正解と感じるなら、>229の納得いく分割は無羨望平等に基づいて無ければならない。

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
つまり、

・どうにかして全員でわけて
・最終的に分配後全員を見渡して
・全員が「よし、すくなくとも俺より多い奴はいねぇ」と思える。

この条件を満たす分配方法が>>17が正解でないと思う人の正解です。
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

ま、正解の条件を「平等」っていう(論理パズルとしては)曖昧な単語一発で終わらした>>1が混乱の原因ですね。

単純平等分割の正解 → >17が正解
無羨望平等分割の正解 → まだ誰もだしてない

って事で皆さんで無羨望平等分割の方法について考えてみる、というのはいかがでしょうか。
で、その方法はありますけどスンゲー難しいですよ。


はっきり言ってそこら辺を区別しなかった>>1とか、
その曖昧さにツッコミを区別が未だについていない藻前らのレベルじゃ無理だぜ!
ぐらい難しいです。


・・・すいません、煽りでした。がんばって欲しい一心。君たちできる子だから。うん。
(俺もわかんなかったので知り合いの数学者に聞いて解答を得て目から鱗だった奴です)


楽しい解答が得られますのでがんばってみてください。
あ、あとn人の場合に一般化はできませんのでよろしく。
キボン多ければ解答書きますけど、長文をお覚悟。

234 :□7×7=4□□:2007/09/21(金) 14:44:00 ID:HrHvtcLn
何にも知らない奴でもググれば一発で回答が出てくる内容を
そのまま延々と書いてて恥ずかしくないのか?

また、その内容をそのまま鵜呑みにして、今回の問いと重ねて
見ている時点で底がしれるが、>>225の間違いに未だに気付いて
いないお前に、説明はできんと思うよ。

235 :225:2007/09/21(金) 14:44:57 ID:O8NIDbYg
↑わかると思うけど3者分割でやってね。
4者分割以上はパズルのレベルじゃないから。

あ ヒント。

・ジュースのボトルを必ず使います
・二回に分けて分配します
・ある人が、3つのものから最初に一つ選んだ場合、その人は文句を言いません
・ある人が、3つのものから最後に一つ選ぶ場合でも、3つに分割したのが自分なら文句を言いません。

つまり、
Aが3等分→B,C,Aの順に取ると、
BとAは文句を言いません。
ではどうやってCから文句が出ないようにするか?

これがポイントです。

236 :225:2007/09/21(金) 14:56:16 ID:O8NIDbYg
>>234
>何にも知らない奴でもググれば一発で回答が出てくる内容

ま、そうなんだけど。
パズルは数学の未解決問題研究じゃないんだから、
「既存の正解があるけど、それをあえて見ないで解決を楽しむ」
って人たちがここにいると思うけど。
ググって答えが出てこないなんてオリジナル新作パズルくらいだろ。
ここそういうスレだった?

俺はもう解答を知っちゃってるからこのパズルに対して楽しめないけど、
ここにいる人たちが楽しめるように、>>1の曖昧な問題をちゃんと定義し直してあげてるだけなんだけどな。
(問題の正しい定義もググればわかるけど、解答も一緒にでちゃってつまんないでしょ)


あと、詳しそうだからそういう単語で聞くけども、
>>1の問題ってenvy-free divison以外の本質を含んでる?
これは純粋にenvy-free divisonでしかなく、
>>17が「Banachの解答」で、まだ誰もConwayの解答に達していない。
そういう状況認識で書いた>>225なんだけど、
間違っていると言うところがどこなのか気になるので教えてもらえると。


237 :□7×7=4□□:2007/09/21(金) 15:07:05 ID:0nkPVXE2
あなたの解説は分かりやすかったが、いきなり何でそんなに必死になるの?
頭は良くてもコミュニケーション能力は低い典型的な例ですね(^ ^)

238 :225:2007/09/21(金) 15:11:23 ID:O8NIDbYg
や、そんな必死でもないんだけど、
>>234のいう「>>225の間違い」がまったくわからないので、気になったんで。
だいたい間違い犯しているとき自分で気づいてないのが人間ですから。

板汚しでしたな。自重しますね。

239 :□7×7=4□□:2007/09/22(土) 13:37:38 ID:n1UPDIfc
いやいや 頭悪いくせにプライド高いカスとコミュニケーションをとるのは難しいよ
いくら説明してあげても理解してくれないしすぐに機嫌を損ねちゃうからね…

>>229
あのさ、当たり前だけど、
「最初は1/N以上だと思ったけどしばらくたってもう一回見ると1/N以下に思えてきた」とか
「最初は他の奴は1/N以下だと思ったけど(ry」とかなしな

そんなこと言いはじめたらこの問題は解決不能
一度は全員納得したけどしばらくすると「やっぱり違う」と文句を言う奴が出る可能性が常にあるんだから

>2には書いてないが問題の前提として一度判断を下したらその判断は変わらない
(そんな前提書いてないからありだ、と主張するなら何も言わんがこの手のパズルはもうやめたほうがいい)


それをふまえて、仮に、おれには荒唐無稽な仮定に思えるが、
「最後の人が、ボトルのときはあると思ってたがコップに移しかえたらやっぱりないように思えてきた」としよう
するとどうなるか?ただ全てのコップに1/N以下しか入ってないように思えるという奇妙な現象が起こるだけだ

もしくは最後の奴は移しかえずにボトルからそのまま飲めw

240 :□7×7=4□□:2007/09/22(土) 22:19:29 ID:ioRtGhx/
>>232>>211には誰もつっこんでないけど
つっこみがない=これが正解でおk?

241 :212:2007/09/23(日) 02:08:22 ID:kgkyh1yn
>>231の続き

「1000mlのジュースを5人で分けるとき、『1/5は250mlである』という感覚の奴を想定することについて」

こういう感覚を持つ奴は論理的に存在し得ない。
全体からこいつにとっての1/5(250ml)を除いた750mlは4/5のはずだが、750mlはこいつにとって3/5ということになってしまう。
これは明らかに矛盾している。だからこんな感覚の奴は存在し得ない。

こういう奴の存在を前提に話を進めて「>>17は間題あり」という結論を出してもそれは無意味。

242 :□7×7=4□□:2007/09/23(日) 17:56:56 ID:1Jck22Ic
あー今やっと>>17説を理解できた。
1/5取ったと思うこと とは 同時にボトルに4/5残っていると思うことでもあるわけだ。
で、そういう認識に至れるのは極めて正解に近い目測ができる者だけだ。
極めて正解に近い目測ができる者しかいないのだから分配が途中で終わったりもしない。
だから>>17は正しいというわけか。

一応は納得できたけど
ボトルが不透明だとどうするのか? とか
最初は実量100mlを200mlだと思っていたやつがボトルを見た際に9/10残っているように見えるのか?
そのあと目測を正確に改められるのか? とか疑問は残るな。

243 :212:2007/09/23(日) 20:40:49 ID:kgkyh1yn
↑『極めて正確な目測ができる奴のみ』とか何を言ってるのか...?分からん..。

244 :□7×7=4□□:2007/09/23(日) 22:00:51 ID:1Jck22Ic
「200mlだと思う量を取る」場合ボトルにどれだけ残っているかは考慮しなくていい。
■■■■←これぐらいが200mlだろうって言えばそれが通っちゃう。
全員がこんな認識だと3人目が取ってる最中にボトルが空になっちゃう。



だが、「コップに1/5だと思う量を取り、同時にボトル内の残量を4/5だと思う量にする」場合
■■■■←これぐらいが1/5だと思って取る
[■■■■■■□□□□]←ボトルはこうなってる 到底4/5残っているとは思えない

■←これぐらいが1/5だと思って取る
[■■■■■■■■■□]←ボトルはこうなってる これも到底4/5残っているとは思えない




コップに1/5だと思う量を取り、同時にボトル内の残量を4/5だと思うためには
■■←(自分の元々の目測を改めて)これを1/5と認識する以外無い
[■■■■■■■■□□]    これを「極めて正解に近い目測」という

全員が元々の目測を「極めて正解に近い目測」に改めれば必ず最後まで分配でき全員が納得できる。

245 :212:2007/09/24(月) 05:41:41 ID:t2M2K26l
「1/5として900mlを取った奴は残りの100mlを4/5だと思えるはずがない。」とか思ってない?
思ってるならそれは違うよ。
いくらだろうと1/5だと思う量を取ったのなら残りはそいつにとって4/5だよ。
「僕は1/5だと思う量を取ったけど残りが4/5だとは思いません。」なんておかしなこと言う奴は論理パズルの登場人物にはいません。

246 :□7×7=4□□:2007/09/24(月) 08:11:33 ID:y0kSdKuZ
> 「僕は1/5だと思う量を取ったけど残りが4/5だとは思いません。」なんて
> おかしなこと言う奴は論理パズルの登場人物にはいません。
つまりすべての登場人物は量を正しく目測できて、
その上で、一人あるいはグループで自分たちの取り分を
増やすような戦略ができないような分け方を考えようということだね?

247 :□7×7=4□□:2007/09/24(月) 09:27:15 ID:KSVSYrAY
「212」の言うことはどうも意味不明だね
>>241を見る限りでは
実量250mlを1/5だと思って取る人物(目測が間違っている人物)は存在しないって言ってるように聞こえるけど
>>245を見ると
存在するって言ってるように聞こえる

結局の所「目測が間違っている人物」…いいかえるなら
「実量250mlとか900mlとかを1/5だと思っている人物」は存在するの?しないの?

「存在する」というなら分配途中でボトルが空になり全員に分配できなくなる→全員納得しない可能性が出てくるし
「存在しない」というなら>>244の言ったように全員正しい目測をするケースしか考えられなくなる

248 :□7×7=4□□:2007/09/24(月) 13:38:00 ID:tj0IbkMo
簡単に言えばこういうことだろ
「これ(900ml)が1/5だと思います。残り(100ml)が4/5です」
「じゃあ君は4/5のほうをとりたまえ。嬉しいだろう」

249 :□7×7=4□□:2007/09/24(月) 13:44:00 ID:tj0IbkMo
目分量が狂っていることによって、
損をすることはあっても得をすることはないというか

半分に分けたつもりがちょっとずれていたら、
その少ないほうを取らされるみたいな感じで

1/5と4/5に分けたつもりが4/5が少し少なかったら、
その4/5のほうを4つに分けたどれかを取らされる

「ずれている」とかも他人たちの主観だけどな

250 :212:2007/09/24(月) 19:10:25 ID:t2M2K26l
>>241で『存在しない』と言ってるのは
「1/5だと思うのは250mlのみ。それ以外の量を1/5だと思うことはない。」
という奴のこと。

「1/5だと思う量を取るように言われて250mlを取った。」
こういう奴は存在しうる。
こいつにとって残りの750mlは4/5なので『1/5だと思うのは250mlのみ』と言う奴とは全く違う。


『250mlを1/5だと思う奴』という言葉でこの2つを混同してはいけないよ。

251 :212:2007/09/24(月) 20:07:11 ID:t2M2K26l
>>246
...ことだね?って言われても、正直サッパリ意味が分からない。
「1/5だと思う量を取った残りはそいつにとって4/5」というのは当然でしょ?
目測の正確さなんて全然関係ないよ。

252 :□7×7=4□□:2007/09/24(月) 21:48:29 ID:KSVSYrAY
>>250 1/5取れと言われて250ml(以上)取る人間は存在しうる と思っているわけだね。

では次の質問。
1000mlのジュースを5人で分ける。(1/5だと思う量を取る)
メンバー全員が実量250ml以上を1/5だと思っている。
1人目はジュースを250ml取り、残り750ml
2人目はジュースを260ml取り、残り490ml
3人目はジュースを270ml取り、残り220ml
4人目はジュースを280ml取ろうとするが220mlしか取れなかった
5人目はジュースを取ることすら出来なかった

このような状況はありえる?

253 :□7×7=4□□:2007/09/24(月) 22:12:03 ID:MVgwCCzU
何mlと絶対量で考えるからおかしくなる
1/Nと相対量で考えないとだめ
>>17にも1/Nとると書いてる

254 :212:2007/09/25(火) 05:30:33 ID:fpYtgo8W
>>252
『3人目が270ml取って残りが220ml』というところまではおかしくない。考えられる展開だ。
『4人目が280ml取ろうとする』っていうのが全くおかしい。
4人目と5人目にとって、残ったジュース(220ml)は2/5以上なんだよ?


255 :□7×7=4□□:2007/09/25(火) 08:32:34 ID:DNnInfNs
魔人を召喚して「同じものを人数分出して」と頼んだらどうかな。
「分けて」だと分子数が人数の倍数でなくちゃ平等にならないから。

256 :212:2007/09/25(火) 20:22:59 ID:fpYtgo8W
>>252
ひょっとしてこう思ってるんじゃないか?

「人によって何mlを1/5だと思うかは決まっている。」と。

つまり、『80mlを1/5だと思う人』、『130mlを1/5だと思う人』、『200mlを1/5だと思う人』、『320mlを1/5だと思う人』...という具合に。

違うかな?

257 :□7×7=4□□:2007/09/25(火) 22:09:56 ID:/exQe2Ep
256の質問に今答える必要はないと思う。
それより>>254
3人目まではありえるということは
1〜3人目(a,b,cと呼ぶ)が取り終わるまで4、5人目(d,eと呼ぶ)はストップを宣言しないということだよね。
そしてストップを宣言をしない理由はa,b,cが取った量がどれも1/5未満に見えたからだよね。

それをふまえた上で質問

■■|||||   ←aが取った量(1/5未満に見える)
■■||||||   ←bが取った量(1/5未満に見える)
■■|||||||   ←cが取った量(1/5未満に見える)
■■||     ←ボトルに残っている量(2/5以上に見える)

d,eはなぜボトルに残っている量が2/5以上に見えるの?
わざわざ言うまでもないことだけど「2/5以上」とは「1/5未満」より2倍以上多い量だよ。
いくら目測がザルでもどちらが多いかぐらいはわかると思うんだけど。

258 :□7×7=4□□:2007/09/25(火) 23:31:34 ID:pPvQFfzI
いやいや、ボトルはいびつだから

「どちらが多いかわかる」のなら、少なくとも
2の累乗等分はつねに正確にできてしまうじゃないか

259 :□7×7=4□□:2007/09/26(水) 00:57:46 ID:QS0kEJJi
実は結構重要なことだと思うのだけど、ジュースはペットボトル
すなわち透明な容器に入っているので、分けるごとに残量が確認できるんだ
よって各人は初めの1/5ではなく、(残りの量)/(残りの人数)を目指す
そのほうが期待値が高くなるからね
そのために皆一回一回想定する量がバラバラになる
誤差ももちろんあるので結果として250ml取る人は現れても、常に250mlを狙う人はいない
>>212が言いたいのはそういうことだろう

>>252
3人目までは誤差が大きければあり得ないわけではないが
4・5人目は残り220mlの半分を取ろうとするので
少なくとも5人目の目測で4回目の注ぎの前の半分が残ることになる

260 :212:2007/09/26(水) 05:44:26 ID:PewXsj+r
>>257
感覚のことに理由なんてないよ。d、eにはそう感じられたんだからしょうがない。
こんな程度でビビってちゃダメだ。1mlと1000mlのジュースを前にして
「どっちが多いと思うかって?そんなもん、こっちの方が1000倍ぐらいあるじゃないか!」
と言って1mlの方を指差す奴は論理パズルの世界にはいくらでもいるよ。

261 :□7×7=4□□:2007/09/26(水) 20:01:52 ID:MQvQrVJC
細かい分配内容は省略。1000mlを5人でわけ各人違う量を取った。
一番少ない人は「俺はこれが200ml以上あると思ってる。他の人より少なくても俺は満足だ」といった。
そんな一番少ない人にこう揺さぶりをかけてみる。

一番少ないあなたのコップにすら200ml入っているとなら
全員のコップをひとつにまとめると1000mlを超えると言うことになりますね。
だが、実際そんなことはない。
だれかは200mlより多く取っていて、誰かは200mlより少なく取っているんです。
そして一番少ない人は間違いなく200mlより少なく取っていて
一番多い人は間違いなく200mlより多く取っているんです。

論理的に考えると一番少ないあなたのコップには200ml未満しか無いんですよ。

262 :□7×7=4□□:2007/09/26(水) 22:22:36 ID:HbzSyFmM
何を根拠に一番少ないといえるのか考えてみよう

263 :□7×7=4□□:2007/09/27(木) 17:51:41 ID:TpXitARC
a,b,c,d,eの順で取り、全員1/5以上取ったと思ってる。
全員満足しているのだから誰が多く取ろうがいまさら文句はない。
そんな状況で「1番多く取ったと思うやつ手を挙げろ」といったらどうなるか?

eが手を挙げるだろう。
eは、abcdが取った量を1/5未満だと思っていたからストップしなかった
つまりabcdより多い量を取ったはずだからな。

2番目は? dが手を挙げる
3番目は? cが手を挙げる
4番目は? bが手を挙げる
「ということはaが一番少なく取ったんだな」という認識を全員が持つ。

さて、全員に「aが一番少なく取った」と認識させた後
>>261を話したらaはどう思うだろうね。

264 :□7×7=4□□:2007/09/27(木) 22:04:28 ID:03Gwhz/0
いやいや

aは
「俺は素早く反応したから人より多いか、または人並みの量が取れた
出遅れた奴らはかわいそうだな」
って思ってるよ

265 :212:2007/09/27(木) 22:35:48 ID:BMvADqpQ
>>263
2番目は? に対してdが手を挙げるのは確実だけど、a、b、cにも手を挙げる可能性はあるよ。

266 :□7×7=4□□:2007/09/28(金) 00:10:12 ID:QgHc4MEK
>>263
残念 6行目までは正しかった

267 :????:2007/09/28(金) 23:59:20 ID:Kzu3WfUo
ある学校で好きな野球チームの好みを尋ねたところ以下の結果が分かった。回答は好き嫌いのどちらかとする。
@阪神の好きな生徒は、中日もすきである。
A巨人の嫌いな生徒は、広島も嫌いだが中日は好きである。
B巨人が好きな生徒の中には、阪神とヤクルトの両方が好きな生徒はいなかった。

確実に言える事は、アからオのどれ?
ア、阪神かヤクルトの好きな生徒は、中日は嫌い。
イ、中日もヤクルトも好きな生徒は、阪神が嫌い。
ウ、広島も巨人も好きな生徒は、ヤクルトも好き。
エ、広島が好きな生徒は、阪神またはヤクルトが嫌い。
オ、ヤクルトの好きな生徒は、広島も好き。

この問題は実際に大学試験で出題された問題です。

268 :□7×7=4□□:2007/09/29(土) 00:32:43 ID:gJJmoPpi
確実にいえるのは横浜がかわいそうだということ

269 :□7×7=4□□:2007/09/29(土) 00:52:22 ID:3omROJ8n

公務員試験みたいだな

270 :九尾のきつね:2007/09/29(土) 12:07:03 ID:3+gWRtz0
だいたいにおいて、分けるやつより取るやつの方が心理的には圧倒的に有利だろ。
うんこ味のカレーと同じくらい無意味な問題だ。


271 :□7×7=4□□:2007/09/29(土) 22:29:54 ID:xlSmTr6K
>>268
パリーグの事も思い出してあげて下さい

272 :□7×7=4□□:2007/10/01(月) 12:21:54 ID:TVA6XHmo
>>270
少しずつ注がれるように固定して
止めた人が取るようにすればいいだけ

273 :□7×7=4□□:2007/10/02(火) 22:32:33 ID:x8IB9OBN
実は自分で考えていてわからなくなったもので
ご教示いただくという形でお願いします。

人間には1%の割合で「殺人者」が混じっており
非殺人者は人を殺さないが、殺人者は毎日人を殺す。
ここに3人の人間がいる。殺人者である確率はひとしく0.01。
翌朝ひとりが殺されているのが見つかった。
残るふたりが殺人者である確率はどう変わるか。

…ふたりの確率が排他でないのでどう配分したらトータル1になるか
わからないのです。


274 :□7×7=4□□:2007/10/02(火) 22:45:37 ID:M7EtPeAT
殺人者の確率が、殺人者の総数/全人口 = 0.01 とすると
3人を定義した時点ではこの中に殺人者がいるとは限らないので、それぞれ0.01
翌朝二人になった時点で
1.この二人以外人間を考慮しない場合
どちらかが殺人者なので確率はそれぞれ50%

2.二人以外のだれかを認める場合
昨日と同じくそれぞれ0.01
全人口-1が母数なんだろうけど、全人口が定義されていないし
常識的に考えるならば66億-1でかわらない

275 :□7×7=4□□:2007/10/02(火) 22:50:10 ID:M7EtPeAT
すまんせん
>常識的に考えるならば66億-1でかわらない
これはなかった事にして下さい・・・

276 :□7×7=4□□:2007/10/02(火) 22:53:27 ID:ZVMcj/6z
まず前提条件をしっかりさせないとややこしくなるかも。

・全人類の1%は殺人者である(先天性であり、不変である)
・殺人者は毎日1人の人間を殺す(≠自殺)

で、全人類からランダムに選んだ3人の人間A,B,Cを(外部から他の人間が
入れない)檻の中かなにかに1日置いてみたところ、Aが殺されていた。

という問題なら、
B,Cのどちらかが殺人者である確率・・・100%
B,Cの両方が殺人者である確率・・・0%
Bが殺人者である確率・・・50%
Cが殺人者である確率・・・50%

277 :□7×7=4□□:2007/10/02(火) 23:21:27 ID:27qeY+ci
BとCが同時にAを殺すという可能性はないのか。

278 :□7×7=4□□:2007/10/03(水) 00:05:42 ID:yW83QPA6
殺人者は自分を殺さない前提で

279 :□7×7=4□□:2007/10/03(水) 06:33:50 ID:U0obKxT/
273です。おつきあいありがとうございます。
一晩考えてみました。

B,Cふたりに着目。
(1)両方非殺人者 81%
(2)Bのみ殺人者  9%
(3)Cのみ殺人者  9%
(4)両方殺人者   1%
Aが殺された時点で、(1)がなくなる。(2)(3)(4)だけしかないなら
B,Cがそれぞれ殺人者である確率は19分の10ずつ。

でいいんでしょうか。

280 :□7×7=4□□:2007/10/03(水) 06:36:27 ID:U0obKxT/
あああ計算間違えた。どっちも199分の100です。

281 :□7×7=4□□:2007/10/03(水) 19:23:36 ID:U0obKxT/
273です。274,276さんの内容がようやく理解できました。
殺人者が二人なら死体も二つ、と考えるのが自然ですね。その辺
考えていませんでした。もうちょっと整理しなおします。
どうもありがとうございました。

282 :□7×7=4□□:2007/10/05(金) 11:58:26 ID:rvvN6V53
ぶった切って悪いが、講談社ブルーバックスの「論理パズル101」の
#28 森の会議 って答えが二つないですか?

283 :□7×7=4□□:2007/10/08(月) 21:51:36 ID:yOvXBZUs
>>281
おまえは頭が悪い。



284 :273:2007/10/09(火) 07:09:40 ID:DOr7+nRZ
>283
す、すみません。
「連続殺人」は同一犯の可能性のほうが高いのか?てな所から
出発していて、連続性の関連で「毎日殺す」という条件を
あまり考えずに付加してしまっていたのです。

285 :□7×7=4□□:2007/10/10(水) 00:20:24 ID:sJONjHt5
否定派の奴らは>>17が正しいことは理解できたのだろうか?
>>215は壁を破ってこちら側に来れたのだろうか?


286 :□7×7=4□□:2007/10/10(水) 22:07:46 ID:YkgELQ2x
あくまで"論理パズルの世界"限定での正しさだからな。
現実世界であんな分け方したら非難囂々だよ。

287 :□7×7=4□□:2007/10/11(木) 21:46:49 ID:48fLFWQ1
正しいのは>>270だ。

288 :□7×7=4□□:2007/10/12(金) 17:53:48 ID:BAhxJSaV
YES,NOで何でも答えるロボットを買いに来ました
お店には3体のロボットがいます
ひとつはYESだと青いランプNOだと赤いランプ
ひとつはYESだと赤いランプNOだと青いランプ
ひとつは壊れていてランダムで光ってしまう
一度だけ質問をして壊れていないロボットを買いましょう
*注意*
3体のロボットのなかのどれかひとつに1回だけ質問ができます
1体につき1つの質問ではないのでご注意を!

289 :□7×7=4□□:2007/10/12(金) 21:24:02 ID:TKhfCfsj
ロボット3体に名前、仮にA,B,Cを付ける。
Aのロボットに「『Bは壊れてますか?』と聞いたら、あなたは
赤く光りますか?」と聞き、青く光ればBを、赤く光ればCを買う。

ただし、買ったロボットはYES時に何色に光るかは不明なので、
購入後に適当に質問して確認する必要がある。

290 :□7×7=4□□:2007/10/13(土) 10:52:34 ID:LA5fXck0
>>289
それだと、ロボットがロボット同士の性質を分かっていて
見分けられるっていうのが前提にないとダメだよね?

291 :□7×7=4□□:2007/10/13(土) 13:21:18 ID:aRKBJsn7
何でも答えると書いてるだろ

292 :□7×7=4□□:2007/10/13(土) 16:31:33 ID:WtqUPZvW
>>290
もちろん。だけど、このロボットは「何でも答える」ロボット。
つまり全知全能の神みたいなものだから、そんな前提は不要だよね。

293 :□7×7=4□□:2007/10/13(土) 18:56:39 ID:AIKHasrV
なんじゃそりゃ。
そんなことより、>>290があってるのかどうか、答えろよ、ぼけ。

294 :□7×7=4□□:2007/10/13(土) 19:05:07 ID:OqO+J6e0
「3体のロボットが『何でも答えるロボット』」
っていう前提はないんだな

295 :□7×7=4□□:2007/10/13(土) 20:09:29 ID:LA5fXck0
作者さん、問題文を改訂してみては?

296 :□7×7=4□□:2007/10/13(土) 21:02:36 ID:aRKBJsn7
言いたくはないが、本当にレベル低いな..。

297 :□7×7=4□□:2007/10/13(土) 22:09:09 ID:DgQj/7Cn
YES,NOで答えられる質問ならどんな質問にでも答えられるロボットを買いに来ました
お店には3体のロボットがいます
ひとつはYESだと青いランプNOだと赤いランプ
ひとつはYESだと赤いランプNOだと青いランプ
ひとつは壊れていてランダムで光ってしまう
3体のロボットの1体だけに1度だけ質問ができます
壊れていないロボットを買うにはどういう質問をしたら良いでしょう?

直すとこうか?
この手の質問問題に比べて一見条件が厳しいように見えるが
壊れていないという正解のロボット2体のどちらでもいいのがミソだな

298 :□7×7=4□□:2007/10/13(土) 22:23:24 ID:WtqUPZvW
('A`)

299 :□7×7=4□□:2007/11/10(土) 17:01:59 ID:QWb7e483
YESとNOがそれぞれ青なのか赤なのか分からないとしても問題解けるな。

300 :□7×7=4□□:2007/12/07(金) 02:17:50 ID:Gbyow5Hj
ゴール

301 :□7×7=4□□:2007/12/07(金) 02:43:52 ID:/vUyuH4e
やったー

302 :□7×7=4□□:2007/12/07(金) 02:47:40 ID:J3eWHuwT
vipからすっごい頑張ってきました
記念パピコ

303 :□7×7=4□□:2007/12/07(金) 02:51:00 ID:dLBL0/Mu
>>302
kwsk

304 :□7×7=4□□:2007/12/07(金) 02:52:25 ID:5nmCkNYe
ようやくたどりついた

305 :□7×7=4□□:2007/12/07(金) 02:53:31 ID:J3eWHuwT
>>303
http://yutori.2ch.net/test/read.cgi/news4vip/1196962661/l50

306 :□7×7=4□□:2007/12/07(金) 03:02:44 ID:dLBL0/Mu
>>305
うはちょ
まだこんなのやってる奴いたのか

まあゆっくりしていってくれ

307 :□7×7=4□□:2007/12/07(金) 03:07:43 ID:3+Fhox+B
ご馳走様でした。

308 :□7×7=4□□:2007/12/07(金) 03:31:19 ID:gxU1dk2O
>>305
こういうの昔やったけど45スレ目ぐらいでやめた思い出が
ちなみに今回は何スレぐらい?

309 :□7×7=4□□:2007/12/07(金) 05:17:41 ID:J3eWHuwT
>>306
懐かしいよなw何年かぶりに見たよw
ありがとw
>>308
20もないくらいだったと思う
結構短かったよ
にちゃん一周旅行みたいなのもあったな昔w

310 :□7×7=4□□:2007/12/07(金) 21:49:26 ID:yoN+H3wZ
なんだ、突然書き込み増えたと思ったら…
ていうか、肝心の元のVIPのスレが落ちてるじゃねぇか。

【保管】スタート
http://wannabe.fam.cx/service/2ch_01/read.cgi?news4vip/1196962661/

311 :□7×7=4□□:2007/12/07(金) 22:21:17 ID:T/i7stol
ミス板からきますた

312 :□7×7=4□□:2007/12/12(水) 11:57:19 ID:lb5F2fhh
なんの板?

313 :□7×7=4□□:2007/12/31(月) 00:39:26 ID:eDkFAzc+
>>2の問題は
1、分ける順番を適当に決める
2、最初の人がN等分してみる
3、全員同時にこれがいいというものを選ぶ
4、一人しか選ばれなかったコップはその人のものに、被ってしまったM人は仕切りなおし
5、次の人が残ったジュースをM等分する・・・といったように全員が決まるまで繰り返す

これじゃ駄目?

314 :□7×7=4□□:2007/12/31(月) 02:29:39 ID:eNgGVi0d
>>313
Aが分けた3つがBには5割,4割,1割に見えて、Cには5割,1割,4割に見える場合はどうするの?

315 :□7×7=4□□:2008/01/06(日) 17:35:59 ID:RNzYNcaW
>>74
>>80
遅レススマソだが
だれが一番上になるかはどうやって決めるんだろう?
事前に5人でジャンケンでもするのか?
それとも看守が問答無用で決めるのか?
いずれにせよ現実問題として考えた場合一番上の人間は白黒どちらを言っても
助かる確率は1/2で変わらないし、自分だけが貧乏くじを引かされた腹いせに
裏切って約束の反対の色を言うようなトンデモな香具師だったりすると、
すぐ下のヤツは確実に死刑になってしまう。
一番上に来るヤツの性格を探る必要があるな。
まあもちろんそんな事まで問題にすればパズルとして成り立たなくなってしまうわけだが…


316 :□7×7=4□□:2008/01/06(日) 21:31:15 ID:WEeOT4sj
>>2
(途中とばし読みです。同一解あればゴメン)。

(Q)
ボトルに入ったジュースをN人で不満が出ないように分ける。
コップはNヶあるが、形状はまちまちな上、計量も不可能である。

(A)
@1人目がジュースをNヶのコップに等分に分ける。
 (その人が等分と納得できるまで徹底的にやる)
AN人目が、1人目のとるべきコップを指定する。
 (これで1人目のコップと取り分は確定)
B2人目が残りのジュースを(N−1)ヶのコップに等分に分ける。
 (その人が等分と納得できるまで徹底的にやる)
CN人目が、2人目のとるべきコップを指定する。
 (これで2人目のコップと取り分は確定)
Dこれを(N−1)回、繰り返す。
 最後に残ったコップを、N人目が取る。
 以上で終了。

なお、1人目の取るコップを、N人目が指定する際、
他の人に見られると
「N人目のやつ、ミスって多い量のコップを1人目に渡したよ…」
と思われる可能性があるので、
このプロセスは他の人にオープンにせず、
1人目とN人目だけで行うべきかも。
(2人目以降も、同様にオープンにせずにやる)

同じ理由で、
「他の人に量を見られる前に
 分けたジュースを飲んでしまうこと」
とすべきかも。

なお、もしかすると、このプロセスは
>>17と同一解なのかもしれません。
違うかもしれません。
(それについては考察してません)。


317 :□7×7=4□□:2008/01/06(日) 21:42:14 ID:CLO8TMIB
N=3として、
一人目と三人目が結託して、二人目の取り分を小さくする
可能性があると思います。

318 :□7×7=4□□:2008/01/07(月) 02:09:42 ID:/01zOuf3
(もともとは、
 「結託ナシ」「結託アリ」の
 どちらが前提条件なのでしょうか?)

(でも「結託アリ」は、派生問題が出来そうで面白そう。例えば
 「参加者同士で自由に結託出来る場合でも、
  等分にするためにはどうルールを定めるか?」とか
 「参加者同士で自由に結託出来るが、
  1度分配した後に、
  参加者間でのジュースのやり取り不可な場合、
  ある分配方法に対して、
  どのような結託戦略を取るのが良いか?」とか…)。



319 :□7×7=4□□:2008/01/07(月) 05:40:49 ID:llvyTpJ3
>2は適当に等分してあとはじゃんけんでいいんじゃないか。いやマジで

320 :□7×7=4□□:2008/01/08(火) 00:32:53 ID:vHOA3S56
>>316
どうしてそれが正解だと思えるのか?本当に不思議。
ちなみに>>17とは全く別物。>>17は正解だよ。
>>319
全員が『自分の取り分は全体の1/N以上だ』と思えないとダメ。

321 :319:2008/01/08(火) 02:40:59 ID:Oi5Xx49W
>320
あぁそういうルールがあるんだね。納得さえいけばなんでもいいのかと思っちゃった

322 :□7×7=4□□:2008/01/08(火) 17:14:16 ID:PAMET6Oc
>>17の答えに納得できない人がいる以上、
この分け方で全員が納得できるとは思えない。

とか言ってみる…

323 :□7×7=4□□:2008/01/09(水) 00:02:15 ID:c5C3Uia7
こちら>>316

(1)

>>17  → 「分けている途中で取る」方式
>>316 → 「分けた後に選ぶ」方式

>>17は、1人目、2人目…と、
どんどん取って行ったあと、
ボトルに残ったジュースの量が
明らかに少ない、という状況になり、
残った人が、
「しまった、早めに取っておけばよかった」
となる可能性があります。

「分けた後に選ぶ」方式は、
この状況を避けることが出来ます。

ただし、残りの「しまった」と思った人が
「オレの判断ミスだからしょーがないな。
 オッケーオッケー」
と、ミスも含めて自分の判断を全て自分自身で引き受ける、
という前提であれば、>>17は正解であると思います。

(2)
>>316には、以下のような弱点があることは理解しています。

例えば、2人目が、ジュースを分けた後、
N人目が、2人目の取るジュースを指定します。

このとき、2人目の人が
「おれはキッチリ等分したからいいが、
 1人目のヤツは、
 オレより多く取っているかも知れない」
(N人目がミスって、
 1人目に多く渡したかもしれない)。
と思う可能性があります。

(これの回避策は…、
  … 今のところ思いつきません)。


324 :□7×7=4□□:2008/01/09(水) 22:10:57 ID:tGWhtLiW
算数の問題

『太郎君の歩く速さは時速4kmです。家から100km離れた駅まで歩いて行くと何時間かかるでしょうか?』

(答) 100÷4=25 25時間

これに対して「100kmずっと歩き続けるなんて無理だろ?飯食ったり休憩したりしなきゃいけないから25時間じゃ無理。」という指摘が入ったとする。

この指摘をどう思う?確かにこの問題を『現実の事』として捉えればもっともな指摘だけど、そういうことじゃないだろう?
こういう問題では太郎君は空腹や疲れや眠気とは無縁で、ずっと時速4kmで歩き続けるとするもんだろ?

つまり『これは現実の話ではなく、理論上のことを現実の話に例えて問題にしている』ということだ。

>>2も全く同じこと。>>17が間違いだという人の指摘の多くは上に挙げた指摘と同じようなもんだよ。

325 :□7×7=4□□:2008/01/09(水) 22:41:14 ID:W/DT6CEE
太郎君の歩く速さは時速4kmと書いてあるんだから時速4kmだろう

326 :□7×7=4□□:2008/01/10(木) 07:53:16 ID:LX5sTp+N
>324
その場合『太郎君が時速4qの速さで家から100km離れた駅まで歩いて行くと何時間かかるでしょうか?』という問題にしなきゃだめだけどね厳密には。

それに
>これに対して「100kmずっと歩き続けるなんて無理だろ?・・・25時間じゃ無理。」
これも間違いとはいえないよ。別に答えが一つである必要なんてないしね。

327 :□7×7=4□□:2008/01/10(木) 17:18:47 ID:OI/hQb/Z
確かに>>17は間違いではない。
だが、いい解答とは言えない。

328 :□7×7=4□□:2008/01/12(土) 10:40:30 ID:qlacI6wr
どうでもいい話だよ。

329 :□7×7=4□□:2008/01/12(土) 13:16:14 ID:QhYEoAKq
パズル板雑談スレッド・ふたことめ
http://hobby10.2ch.net/test/read.cgi/puzzle/1196308034/71-73

71-73でこのスレ向きの話題が。


330 :□7×7=4□□:2008/01/12(土) 19:41:53 ID:p+vuxY3D
前提によって解は変わる、ってことね。

もともとの前提がガチガチでない場合は、
前提はなるべく狭くしない、
というのが、普通なんでしょうけど。

(または、前提を場合分けして、
 それぞれに対する解を出す、とか)

----------
1+1の解がいっぱいある、というハナシは、
「いろいろ考えていくことの面白さを示す」
という点では良いかも。
(そういう主旨の番組みたいだし)

(「2進法は単に表記の問題でしょ」とか、
 ツッコミどころは、イロイロあるでしょうが、
 もともとそういう主旨の番組でもなさそうだし)。


331 :□7×7=4□□:2008/01/14(月) 13:39:46 ID:q/LtZzNn
こちら>>316
>>2 について、解を以下のように修正。
(なお、>>313を参考にしています)

(Q)
ボトルに入ったジュースをN人で不満が出ないように分ける。
コップはNヶあるが、形状はまちまちな上、計量も不可能である。

(A)
@まず、くじ引きで、全員に、順番1〜Nを決める。
 (これは、ジュース分配作業の順番です)。
A次に、1人目の分配者が、ジュースをNヶのコップに等分に分ける。
 (その人が等分と納得できるまで徹底的にやります)
B分配者を除いた残りの全員(N−1人)が、
 同時に自分の取りたいコップをゆびさす。

 この時点で、全員が別々のコップを指定すれば、
 その通りに分配して終了。
 (分配者は残ったコップを取る)。

Cもし、同じコップを2人以上が指定した場合はどうするか?
 この場合は、誰も指定していないコップが出ることとなる。

 そこで、分配者を除いた残りの全員で相談して、
 誰も指定していないコップのうちから、
 いちばん少なそうなコップを1つ選び、それを分配者に渡す。
 (これで1人目のコップと取り分は確定)

D次に、2人目の分配者について、A〜Cのプロセスを行う。

Eこのようなプロセスを(N−1)回、繰り返す。
 以上で終了。

----------
なお、このやり方だと、Cの、
「そこで、分配者を除いた残りの全員で相談して、
 誰も指定していないコップのうちから、
 いちばん少なそうなコップを1つ選び…」
という選択プロセスについて曖昧さが残るので、
自分で書きつつも、ちょっと気持ち悪い感じ…。

332 :□7×7=4□□:2008/01/15(火) 05:52:24 ID:9mSjq9p0
曖昧さなんてもんじゃなくて致命的欠陥だよ。
『これが一番少ない』ということで意見が一致するとは限らないんだから残念ながら不正解。

333 :□7×7=4□□:2008/01/15(火) 23:57:12 ID:wzoJgjV7
>>316>>331です。

>>332の言う通りなんですよねえ。

どのようにすれば「分配者に渡すコップ」について、
残りの全員の合意が取れるのか…?

(または、合意ナシで渡しても、
 不満が出ないようにできるか…?)


334 :□7×7=4□□:2008/01/16(水) 01:18:54 ID:thSspa2+
どう配分しても不満は出るよ。
なんにでもいちゃもんを付けたがる人がこの世に確実に数%実在するのだから。
完全に均等配分しても、自分が全部もらっても、それでも文句を言う人が実在するのだから。

335 :□7×7=4□□:2008/03/05(水) 21:55:54 ID:hRe5wKe3
>>334
何酔いしれてんだ?何が『実在するのだから』だ!
スレタイ読め。声に出して読め。

336 :□7×7=4□□:2008/03/06(木) 13:42:31 ID:MDZKwqCc
>>267
意義あり。
A巨人の嫌いな生徒は、広島も嫌いだが中日は好きである。
↑広島が嫌いな奴が巨人も嫌いとは限らない。
よって
エ、広島が好きな生徒は、阪神またはヤクルトが嫌い。
は間違いなのでは?



337 :□7×7=4□□:2008/03/06(木) 13:58:04 ID:MDZKwqCc
均等に3人で分ける問題について俺の出した解答
・まずAが3等分に分ける
・更にBが多いと思った奴を少ない奴に分ける
・C→A→Bの順番で選ぶ

なぜC→B→AでないのかはBが分けるときに、中間と(多い又は少ない)
で分ける可能性があるから


338 :□7×7=4□□:2008/03/06(木) 14:06:30 ID:MDZKwqCc
均等に4人で分ける問題について俺の出した解答
・まずAが2等分に分ける(これをa、bとする)
・Bがaを、Cがbを更に二等分する。
・Dが4つの中から選び、次にAがDの選ばなかった(a又はb)方を選ぶ。
・Bはaの残りをCはbの残りを選ぶ。


339 :□7×7=4□□:2008/03/06(木) 14:12:57 ID:MDZKwqCc
338の解答で
Aが2等分に分けるとき、B〜Dの同意を得るが抜けていました。

340 :□7×7=4□□:2008/03/06(木) 21:12:24 ID:bD42SX8O
3人の場合、4人の場合、ともにダメ。
もっとよく考えてみろ。
あと全体的に説明が雑すぎる。

>>339は「B〜Dから『うん、確かに2等分だね』と認めてもらう」という意味か?
そんなことが出来るなら2等分じゃなくて4等分してB〜Dの同意を得ればいいだろ。

341 :□7×7=4□□:2008/03/07(金) 11:40:31 ID:qhQrOFTB
>>335
みんな約1.5ヶ月スルーしていたのに・・・
>>336
意義あり。
僕はがんばっている選手のチームは全て好きです。

342 :□7×7=4□□:2008/03/07(金) 22:42:19 ID:gtyZH1qE
>>341
意義あり。
スルーじゃなくてこんなスレ見てないだけだろ。

343 :□7×7=4□□:2008/03/09(日) 23:05:25 ID:Oq7eB6Jj
>>337
Aが分けた3つを便宜、多、並、少とすると、
(多+少)÷2=並が成立していないので全然ダメ。

344 :□7×7=4□□:2008/03/24(月) 16:12:32 ID:4Ke12J9/
ttp://book.2ch.net/mystery/kako/1010/10107/1010729672.html#tag265
265 :はじめまして [sage] :02/02/17 23:59
100℃の赤い水と同じ量の0℃の青い水があります。
赤い水を使って青い水を何度まであげられるでしょうか?
但し温め方は二つの接触のみで、混ぜたりしてはいけません。
それ以外は自由です。状況は理想化して考えて下さい。
系は完璧な断熱系で、熱の拡散等はないとします。

345 :□7×7=4□□:2008/03/24(月) 23:55:35 ID:lx5R8buK
熱くなった青い水は一滴でもいいのか

346 :□7×7=4□□:2008/03/25(火) 04:52:27 ID:YqKWl8SB
青が一滴(かぎりなくゼロ)だと簡単に100℃だから
青は100tとかにした方がよくない

347 :□7×7=4□□:2008/03/25(火) 10:55:56 ID:4xmNQWQp
これはどんなトリックなんですか?

1  名無しのオプ     02/01/11 15:14
舞台は小学校です。5時間目の授業中にみんなが臭いと言い出します。
最初は校庭の肥やしの匂いかと思いますが、窓を閉めても臭います。
誰かがウンコ漏らしたヤツがいるんじゃないかと言い出します。
クラス中が大騒ぎになる中、一人だけ黙ってるヤツがいます。どうも
その席が臭いの中心のようです。でも、探したりそいつの尻を嗅いでも
匂いません。そいつは今までクラスの中心人物だったのに翌日から「う
んこ仮面」「えんがちょ」と呼ばれてしまい、権威は大失墜です。
でも実はこれは僕がそいつを追い落とすためにしかけたトリックでした。

348 :□7×7=4□□:2008/03/25(火) 11:04:34 ID:tv1/1FLA
単純に赤と青をくっつけて熱を移動させると
青(0℃)100cc+赤(100℃)100t→青(50℃)100cc+赤(50℃)100cc
50℃になる

ちょっと小細工をして青を2等分して青1、青2に分けて
 青1(0℃)50cc+赤(100℃)100t→青1(67℃)50cc+赤(67℃)50cc
 青2(0℃)50cc+赤(67℃)100t→青2(44℃)50cc+赤(44℃)100t
最後に青1、青2を混ぜて青3にすると、
 青1(67℃)50cc+青2(44℃)50cc→青3(56℃)100t
56℃(55.55・・・)になる

どういう細工をすればいいかと言う問題
……一滴単位で熱移動すると青が100℃になるってオチじゃないだろうなw

349 :□7×7=4□□:2008/03/25(火) 11:10:05 ID:4xmNQWQp
>>344
>状況は理想化して考えて下さい
じゃあ、状況は理想化するよ。
室温200度の特殊室内なら、約200度まで上げられます。
室温1000度の特殊室内なら、約1000度まで上げられます。

350 :□7×7=4□□:2008/03/25(火) 18:57:26 ID:RPiSI0UR
糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ
糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ
死死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね
死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね

中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね
中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね
中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね
中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね


351 :□7×7=4□□:2008/03/26(水) 01:16:46 ID:M0FbCKMn
傾いているように見える

352 :□7×7=4□□:2008/03/26(水) 06:17:32 ID:M1wO2kta
赤い水の方を分けるのも有効だな

353 :□7×7=4□□:2008/03/26(水) 17:01:51 ID:UkQ5zIZi
分配の問題って、例えば
AさんBさんCさんでイ、ロ、ハの三つのコップに分配した時、Aさん基準で見て
イ:ロ:ハ=4:3:2の時
Aさんはロのコップで満足なの?

354 :Aさん:2008/03/26(水) 17:04:29 ID:rl64nK3K
全部ひとりじめしないと満足しません。

355 :□7×7=4□□:2008/04/07(月) 10:57:49 ID:xeI8D5z9
>>353
>>225に詳しく書かれてる。
このスレでは簡単な方の『自分の取り分が1/n以上ならOK』の方で議論されている。
が、それでもトンチンカンなこと言う奴続出。
>>17否定派の迷走ぶりは笑える。
分かってないくせに何かいっちょまえなこと言いたがるバカが多すぎる。

356 :□7×7=4□□:2008/04/07(月) 16:49:01 ID:QmVXVnFO
>>17の回答はダメだ。
なぜなら、1/nの量の予測がつかないから、
後から、もう少しもらえるはずだったと後悔しかねない。

俺の回答
じゃんけんをして負けた順にA,B,C・・・とする

Aがすべて等量だと思うように全てのコップに分配する。

BがAの飲むコップを指定する
(BはBが思う最も少ないコップを指定するが、
Aは等量だと思い込んでいるので無問題)

Bが残りのすべて等量だと思うように全てのコップに分配する。

CがBの飲むコップを指定する

以下同様

357 :□7×7=4□□:2008/04/07(月) 16:51:16 ID:QmVXVnFO
最初の時点でAが等量にできる限り近づいているので、
誤差もほとんど無いと思われる。
意図的に誰かが一つだけ少ないものや多いものを作ったとしても、
その人は自分で選べないし、
次の人が量を調整しなおすので問題ない。

358 :□7×7=4□□:2008/04/07(月) 16:58:27 ID:QmVXVnFO
でも、よく考えたらコップの形状が違ったらできないな。
>>17が正解か・・・
しかしもっと良い方法がありそうだ。

359 :□7×7=4□□:2008/04/07(月) 17:16:25 ID:QmVXVnFO
@一人が均等だと思うようにコップに分ける。

Aコップを一つずつ指差しながら、
「このコップが1/n以上だと思う人?」と聞き、
手を挙げてもらう。(分けた人は参加しない)

B複数の人が手を挙げたら次のコップへ

C一人しか手を挙げなかったら、そのコップは手を挙げた人のもの
一人しか手を挙げなかったコップがなくても、Dに進む

E残りのコップを別の人が均等だと思うように調整しなおす。

@〜Eの繰り返し

こうすれば、時間はかかるが>>17の欠点はなくなる。

360 :□7×7=4□□:2008/04/07(月) 17:17:14 ID:QmVXVnFO
スマソ、
EをDに読み替えてくれ

361 :□7×7=4□□:2008/04/07(月) 17:24:10 ID:QmVXVnFO
訂正

@一人が均等だと思うようにコップに分ける。

Aコップを一つずつ指差しながら、
「このコップが1/n以上だと思う人?」と聞き、
手を挙げてもらう。(分けた人は参加しない)

B複数の人が手を挙げたor誰も挙げなかったら次のコップで
同様に質問する
一人しか手を挙げなかったら、そのコップは手を挙げた人のもの
(この場合、残りのコップは質問しないでCに進む)
一人しか手を挙げなかったコップがなくても、Cに進む

C残りのコップを別の人が均等だと思うように調整しなおす。

@〜Cの繰り返し

これだと、最初の時点で1/nの量というものがだいたいわかるから、
>>17のように、最初の方で取った人から不満が出ることはない。

362 :□7×7=4□□:2008/04/07(月) 17:29:07 ID:QmVXVnFO
A〜Cの繰り返しだわorz
俺あほすぎて笑える・・・・・・・・

363 :□7×7=4□□:2008/04/08(火) 02:34:28 ID:ZskJTWp1
誤差とか何言ってんだか..orz
手に入れたジュースの量が実際の1/nに近いかどうかなんて全く関係ない。
そいつの感覚でジュースの量をどうとらえるかが全て。
1/nよりはるかに多い量をもらったってそいつが1/nより少ないと思えばダメだし、
はるかに少ない量でもそいつが1/nより多いと思えばOK。
この問題を考える上で基本中の基本だぞ。


364 :□7×7=4□□:2008/04/08(火) 11:02:05 ID:FCjWCOaJ
>>363
感覚とか言い出したら、結論は>>334

365 :□7×7=4□□:2008/04/08(火) 18:52:02 ID:Beun1pWu
糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ
糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ糞ジジ
死死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね
死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね死ね

中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね
中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね
中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね
中年だと思ってない中年じじー死ね 中年だと思ってない中年じじー死ね

366 :□7×7=4□□:2008/04/09(水) 03:11:55 ID:cc/06591
>>364
君は(君だけじゃないけど)この問題を正しく理解できていない。
よってこの問題の答えを考えたり>>17が正しいかどうかを判断したりできるレベルにはない。
ムカついたかもしれないけど本当のことだからしょうがない。
明日から何回かに分けてこの問題を理解する上で重要なことを書く。よかったら読んで欲しい。

367 :□7×7=4□□:2008/04/09(水) 11:18:35 ID:egWCKfmK
>>366
1回で書いてくれ。

368 :□7×7=4□□:2008/04/10(木) 03:40:52 ID:6N1qkSus
まず分かっておかなければいけないのは、この問題は論理パズルであるということ。
つまり、論理的におかしいことは許されないということだ。
現実の世界では論理的におかしなことを言う人は別に珍しくない。
でも論理パズルの世界ではそんな人は存在しないのだ。

2つに分けられたジュースの一方を1/2より少ないと感じた人は、もう片方を必ず1/2より多いと感じる。
いくらその人の感覚だからといっても、両方とも1/2より少ないと感じることはない。
そんなのは論理的におかしいからだ。


369 :□7×7=4□□:2008/04/10(木) 20:21:53 ID:wGLQbxY6
今更だけど>>257の質問に対して
>>260の回答ではいまいち納得がいかない。

こんな異常な人間が存在しなきゃ成立しない答ってひどすぎるだろう。

370 :□7×7=4□□:2008/04/11(金) 02:23:03 ID:KhlsGRiD
>>369
なんでそうなるの?
『こんな異常な人間がいなきゃ成立しない』んじゃなくて、
『こんな異常な人間がいても成立する』んだよ。

371 :□7×7=4□□:2008/04/11(金) 02:45:06 ID:KhlsGRiD
大事なことだからもう一度書いておく。

この問題は論理パズルだから論理的整合性は常に保たれる。
論理的におかしな言動を取る奴は存在しない。
各人がどんな感覚を持とうと構わないが、論理的におかしくないことが大前提である。
例えば、2つに分けられたジュースの両方を1/2より少ないとする感覚の持ち主の存在は認められない。

372 :□7×7=4□□:2008/04/11(金) 10:31:27 ID:uXH6PbFf
『異常な人間がいても成立する』ってことはいなくても成立しなきゃいけないよな。
じゃあ、全員1/5の正確な目測はできないが、コップ同士やコップとボトルを比較してどちらが多いかは正しく判断できる
という前提があったとして>>257の状況はありえるか?

aとbが取り終わるところまではありえるだろう。
a、bが取り終わった時点まではc、d、eはaおよびbのコップの量を1/5未満だと思っていられる。
だが、cが取っている最中にcのコップとボトルの量がほぼ同じになったらどうだ
cのコップの量およびボトルの残りは明らかにa、bより少ない(ようにc、d、eには見える)

こうなった場合、c、d、eはどういう考え方をすればa、bは1/5未満だと思い続けられる?

373 :□7×7=4□□:2008/04/11(金) 10:58:48 ID:lG5Dmlbe
> 全員1/5の正確な目測はできないが、コップ同士やコップとボトルを比較してどちらが多いかは正しく判断できる
形状の違いから判断できないという前提に反していて、問題の性質がまったく変わってしまう

> だが、cが取っている最中にcのコップとボトルの量がほぼ同じになったらどうだ
誰の主観で半分になったのかは知らないけど
その前に残りの1/3に達したと最初に感じるc,d,eのいずれかが取る

量を判断しているけど、それは>>368なので
c,d,eの目には残りは3/5以上だと写る

374 :□7×7=4□□:2008/04/11(金) 13:40:27 ID:uXH6PbFf
俺の主張は「異常な人間が存在しなきゃ成立しない答はひどすぎる」というもの。
そもそも問題文に「コップ同士やコップとペットボトルの量を大まかに比較することはできない」とは明確に書いてないし
少なくとも俺には「1/nの正確な目測ができない」という意味にしか聞こえない。

「この問題の登場人物は量の比較すらできない」って改めて言ってるだけじゃ>>260となんにもかわんない。
「(量の比較すらできない)異常な人間がいなきゃ成立しない」という部分も否定できてない。

375 :□7×7=4□□:2008/04/11(金) 14:00:46 ID:BDxmc0ko
>>368>>371
少なく感じるとか多く感じるとかそういうのはどうでもいいんだよ。
この問題では、たとえものすごく少なく感じても、不満に思わなければそれでよい。


376 :371:2008/04/11(金) 14:31:07 ID:KhlsGRiD
昨日は続きを書く前に寝てしまった。
と思ったらなんかゴチャゴチャしてるな。
>>372
結論だけ書くと、『1/5の正確な目測は出来ないが、どちらが多いかの判断は正確に出来る』
という前提そのものがおかしい。そんな奴は論理的に存在しえない。
詳しくはまた今晩書くから、よーく考えてみろ。
ちなみに>>373の説明はおかしいので気にしなくていいよ。>>375は論外

377 :□7×7=4□□:2008/04/11(金) 15:06:13 ID:BDxmc0ko
>>376
>>2をちゃんと読め。少ないと感じるかどうかなんて関係ないぞ。
問われているのは、どうすれば「全員が納得いくように」かだぞ。

378 :□7×7=4□□:2008/04/12(土) 03:11:55 ID:/hEOjk3l
この問題の答えを否定する場合の注意点

まず、ある状況とか人物の存在を仮定する。
次に、その仮定のもとで話を進める。
そして、自分の取り分が1/n以上だと思えない奴が出る結末を導き出す。
よってこの答えは間違いであるという結論を出す。


ちゃんと出来てればこれでOKなんだけど、>>17を否定する奴のなんかを見ると最初の仮定が間違ってるのがほとんどだ。
つまり、論理的に存在しえないことを仮定しているということ。
これでは答えを否定したことにはならない。
好き勝手に何でも仮定していいわけではない。
『この仮定は論理的におかしくないだろうか?』ということを徹底的に検証するべきだ。

379 :□7×7=4□□:2008/04/12(土) 03:39:42 ID:/hEOjk3l
『1/5の正確な目測は出来ないが、どちらが多いかの判断は正確に出来る奴』が論理的に存在しえないことの証明

こいつにジュースを5等分だと思うようにコップに分けさせる。

こいつは1/5の正確な目測は出来ないから、ジュースの量の異なる2つのコップが存在する。

こいつはどちらが多いかの判断は正確に出来るから、この2つが同じ量だとは思わない。

つまりこいつはこう言ってることになる。
「この2つのコップに入ってるジュースはどちらも全体の1/5です。しかし同じ量ではありません。」
明らかに論理的におかしい。だからこんな奴は存在しえない。

380 :□7×7=4□□:2008/04/12(土) 09:23:31 ID:dHLgqvzc
>>379
その人は1回目だけ「1/5だと思う量」を取り2回目以降は「1回目と同じ量」を取るよ。
そんなんじゃボトルが途中で空になるかジュースが余る?あたりまえだ。
1/5の目測が正しくできない人が1回できっちりわけられるなんて論理的にありえないもの。
そんときゃ「1/5だと思う量」が間違っていたということで
「1/5だと思う量」を変えて他もそれにあわせていけばいつか5等分できるだろう。


さて、>>17肯定派の主張は
「ボトルの残りをn/5からn-1/5にした」ことを根拠に登場人物は1/5取ったと思い込むはず。 というものだよね。
俺の主張は
前の人が取った量を「1/5未満」だと思うなら自分はそれより多いと思う量を取らなければ取った量を「1/5以上」だと思えない。これ。
「1/5以上」>「1/5未満」でなければ論理的に破綻しているからね。
そして、どんな量を取ろうが自分は前の人より多くとったと思うためには量の比較ができない異常者が必ず必要になる。
異常者が絶対現れないとは言えないから一応それでも正解ということにしてもいいけど、それでは問題の質が悪すぎるだろう。
これについて納得のいく意見が聞きたい。

381 :□7×7=4□□:2008/04/12(土) 11:16:50 ID:/hEOjk3l
すごいね。納得のいく意見が聞きたいそうだけど、君を納得させるのはかなり大変そうだ。
まあでも頑張ってみますよ。
『量の比較が出来ない異常者』とか言ってるけど、それが普通なんだよ?
まあ別にそういう『異常者』がいなくてもいいけど、
その場合は「各人が正確に1/nずつのジュースを受け取る」という分配以外ありえないぞ?それは分かるかな?

まあまた書きます。

382 :□7×7=4□□:2008/04/13(日) 10:38:16 ID:t4cOYZ9t
量が多ければ喜ぶとは限らない。
ダイエット中の人とかもいる。その飲み物を嫌いな人もいる。

383 :□7×7=4□□:2008/04/21(月) 18:56:22 ID:u/t3WmWq
「前の人は1/5未満しか取ってない」「自分は1/5以上取った」を根拠に
「自分は前の人より多く取った」と思うことは可能だし
登場人物が必ずこのように行動するなら>>17は正解でいいだろう。

でも、「量の比較が正確にできない」としても「比較をしてはいけない(しない)」わけではないし
登場人物は目視で比較をしない または 目視の比較を必ず間違う
という保証がないと>>17を正解とは認められないかな。

384 :□7×7=4□□:2008/04/22(火) 02:45:39 ID:gixwWb89
>>383
>>381ですけど、何言ってんのかサッパリわからない。
比較とかってどういうこと?
どういう状況で>>17がうまくいかないのか具体的な例を挙げてみて欲しい。

385 :□7×7=4□□:2008/04/22(火) 17:54:55 ID:sjp2z67L
前の人が取った量を「1/n未満」だと思うなら自分はそれより多いと思う量を取らなければ取った量を「1/n以上」だと思えない。
これはわかるよね。
じゃあ何を根拠に前の人より多く取ったと思うか?

前の人のコップと自分のコップを目測で比較すればいい。
単なる目測なのだから「自分の方が多い」と思うこともあれば「自分の方が少ない」と思うこともあるだろう。
「自分の方が少ない」と思った場合はもっとジュースを取らなきゃいけない。
でも、全員がそう行動すると途中でボトルが空になる可能性がある。
失敗する可能性のある答えは正解とは言えないでしょ。

386 :□7×7=4□□:2008/04/23(水) 03:03:36 ID:vx6jf7AC
何かまだよくわからないなあ。

ジュース全体の量が100でそれを5人で分ける場合でいうと
最初の人が20取ったら次の人はそれより多く取らないといけないからたとえば25取る。
3番目の人は33取って...という展開でジュースが足りなくなる。

というようなことを言いたいのかな?

387 :□7×7=4□□:2008/04/23(水) 18:37:12 ID:njPBvDva
>>386そういうことです。

「自分は1/5以上取った」と思ってた人が後になって意見を変えることはあり得ない とか言うのは無しですよ。
「自分は1/5以上取った」という感想は目測の結果なのだから間違っている可能性もあるんです。
だから後になって「さっきは間違っていた」と考え直す可能性もあります。

388 :□7×7=4□□:2008/04/24(木) 02:56:02 ID:BzvgS36M
何かもうため息がでますな...。
いや、そりゃね
『最初は1/nだと思ったけど分配が進んで他の人のコップを見るとそう思えなくなってきた』
というのは現実の世界でならいかにも起こりそうな事態だと思うよ。
だけどこの問題は論理パズルなんだよ?もうちょっとこの問題の本質ってもんを理解して下さいよ。


389 :□7×7=4□□:2008/04/24(木) 02:58:47 ID:BzvgS36M
続きはまた明日書く。疲れた。

390 :□7×7=4□□:2008/04/24(木) 10:25:00 ID:/4+Yee11
登場人物が論理的に矛盾する思考をするわけがない と思っているのならそれは間違いです。
登場人物に論理的に矛盾する思考をさせない のが論理パズルの解答であるべきです。
また、矛盾する思考をさせないために登場人物の行動を制限するのもよくありません。

登場人物はボトルを見ながら1/5以上取ったと判断した後、コップの比較をすると勝手に思っていませんか?
前の人のコップを見ながら前の人より多く取ったと判断した後、ボトルを見る可能性もあるんですよ。

391 :□7×7=4□□:2008/04/25(金) 00:11:50 ID:CRFdeckQ
そもそも途中で変わったというのを認めたら

>>3ですら
切ってから相手が取ったほうが大きく見える
みたいなことがあるのだから

そんなのを根拠に正解と認めないというのはおかしい。

>>3の場合はAは切った瞬間,Bは選んだ瞬間半分以上だと思えばそれでいいし、
>>17の場合も止めた瞬間にその人が半分以上だと思えばいい。

392 :□7×7=4□□:2008/04/25(金) 05:02:36 ID:U9AxbGJZ
>>390
何言ってんですか...。

各人がジュースの量に関してどんな感覚を持ってるかは分からない。
ただし、論理的に矛盾する言動はしない。論理的整合性は常に保たれる。
こういう状況下で全員が「自分は1/n以上のジュースをもらった」と思える分配法を答えよ。
というのがこの問題だよ。

最初は1/nだと思ったけど後でそう思えなくなったなんていうのは論理的に矛盾している。
「これは1/nです」と「これは1/nではありません」だよ?これが矛盾してるのはわかるよな?


393 :□7×7=4□□:2008/04/25(金) 10:52:23 ID:+B8pgBtk
ジュースは少ない方がうれしいです。太るから。

394 :□7×7=4□□:2008/04/25(金) 18:39:00 ID:6H9nLPke
主観Aによって暫定的に決めていたことを主観Bによって変更するのは論理的に矛盾してないと思いますが
百歩譲って一度決めたことは覆さないとしましょう。
それでも登場人物の考え方次第では>>17は失敗します。

Aがジュースを取りました。Bも大体同じ量取りました。
さて、この時点でA,Bはどちらも1/5未満しか取ってないとC,D,Eは思っています。
なので、A,Bとほぼ同じ量まで取ってもボトルが空になることはないはずです。
また、A,Bとほぼ同じ量まで取ってさらにもう少し取ることで1/5以上にできるはずです。
C,D,Eはボトルには目もくれずコップだけを見てジュースを注ぎます。
すると途中でジュースが出なくなりました。ジュースは1000mlしかなくA,Bは約350ml取っていたのです。
コップに取れた量はA,Bが取った量より少ない気がします。
それでも「これはA,Bより多く1/5以上だ」と無理矢理思い込むこともできますが
全員がジュースを取ることはできなくなりました。分配失敗です。

395 :□7×7=4□□:2008/04/25(金) 20:23:09 ID:CRFdeckQ
>>394
ボトル見ればいいじゃん
ボトルとコップの比率が
1:残り人数−1
になったときに止めればいいんだから

396 :□7×7=4□□:2008/04/25(金) 20:56:22 ID:6H9nLPke
ボトルをみて分配するなら>>17は成功します。それは百も承知です。
肝心なのは「>>17が失敗する可能性もある解答」という点です。
失敗する可能性のある解答は正答とは言えません。

>A,Bはどちらも1/5未満しか取ってないとC,D,Eは思っています。
>なので、A,Bとほぼ同じ量まで取ってもボトルが空になることはないはずです。
この理由によりボトルを見る必然性が無くなりました。登場人物はボトルを見ない可能性があります。
"絶対に"ボトルを見なければならない理由があるというなら述べてください。

397 :□7×7=4□□:2008/04/25(金) 22:19:22 ID:M5NGrwEM
パズル面白いな
他にもあったお
http://3server.sakura.ne.jp/tv/pc/img.php?src=../src/2201-5.jpg

398 :□7×7=4□□:2008/04/26(土) 03:45:25 ID:eoJLBMCO
>>394
何言ってんだよ...。

本格的に反論する前に思わず笑ってしまった点について聞いてみたい。
C、D、EはA、Bの取った約350mlのジュースを1/5未満だと感じたんだよね?
実際には全体の1/3以上もあるジュースを1/5未満だと感じたんだよね?
これは正確な感覚、まともな感覚とは言えないよね?
ところが!3番目のコップに注がれるジュースとA、Bのジュースを比べる段階では当たり前のようにまともな感覚になってるのはどういう訳?
A、Bのジュースと同量のジュースかどうかが正確にわかることが前提になってるのはなぜ?
前述のようにC、D、Eはまともな感覚じゃないんだから、例えば100mlのジュースがコップに注がれた時点で
「これがA、Bとほぼ同量のジュースだ。」と感じる可能性があるとは思わないの?

399 :□7×7=4□□:2008/04/26(土) 08:57:56 ID:MEDpgwu7
問題をとりあえず1/5に分けると言うことにしてたから1/3以上も取るなんてあり得ないと思うんですよ。
1/10000に分けるという場合どうです?
1/10000なんて量正確にわかる人間なんてそうそういません。
20/10000ぐらい取っても異常な感覚だと非難することはできません。
でも、前の人とほぼ同量取るのならおおむね正確にできるでしょう。

それから、今議論しているのは>>17が失敗する可能性があるかどうかです。
成功する可能性があることはわかっているので今更語る必要はありません。
>>17肯定派の人が今すべきことは>>394のような事態が"絶対に"発生しないことを証明することです。

400 :□7×7=4□□:2008/04/26(土) 12:02:32 ID:xA1EhCOF
論理的かどうか分からないですけど。

1とりあえず全てのジュースをコップに分ける
2そのあと全員が納得いくまで何回でもコップのジュースを移しかえていく
3みんなが納得する点に落ち着く
4かんぱ〜い!


話し合いがすべて。

もう面倒って思う人も
遠慮する人も
ジャイアンみたいな人もいると思うけど

なんか政治的な話でダメかな?
「全員が納得」を優先するには、合理的ではあると思うが。

移し変えちゃダメルールとかあるの?


401 :□7×7=4□□:2008/04/26(土) 14:25:13 ID:xA1EhCOF
>>267はオだと思うけど、消去法で決めたから確実とは…

>>17の論理に対する争点は、性善説(論理ルール主張派)と
性悪説(設問にパラドックス派)に別れている

最後の二人が分けた瞬間をどう捉えるかがポイント。

性悪説だと
最後の二人には必然的に駆け引きがしょうじて、駆け引きに負けた方は不満を持つ。
そこで、やり直しが生じると、残りの人間も不平を言い出す。

そもそも、17の数式は正確な分割法でなく、各個人の判断にゆだねられている
その上で、出来上がった数式をn回積み重ねていっても(むしろそれを積み重ねるほど)
最後の分割に矛盾が生じると思われる

この場合の公平さには(まあ不公平でも、おつりサギのような数字トリックで納得いく奇特な人がいるわけだが)
全員のまとまった総意もしくは、神の視点の審判が必要であり、
この場合、17の数式はn回の別の人間の判断が介入している点で、数式に客観性が欠如している。

よって、個人の利得がからみ得ない絶対不変の公平な数式が現われてない以上、
全体の総意を一つにする方法(民主主義でも、年功序列でも)を選択することが全体の納得への近道である。

性善説だと、極論だが、一人や二人飲めなくても納得する。
結果数式使おうがジャンケンだろうが、形として分配されればいいんじゃん
みんな慈愛の心で納得しようじゃん

だから、解としては
17の数式はあってるけど、設問の日本語訳が間違っている。
でいいんじゃね?

と弁証法的に主張する男がいた。
この主張の矛盾点を説明せよ。


402 :□7×7=4□□:2008/04/27(日) 10:39:09 ID:lb9fZZxv
くだらん。
愚にもつかん議論だ。
分けるやつが不利に決まってるだろうが。
ボケども、連休中やっとけ。
あほ。

403 :□7×7=4□□:2008/04/27(日) 13:06:30 ID:9wvAaeQD
はじめてこのスレ来たが何やら争ってるようだけど・・・コップの問題の議論ぽいので、とりあえず3人の場合から考えてみるテスト。
100Lを2人で分けた。
主観で分けたので、49Lと51Lに分かれた。
分けた人は49Lでも51L納得でき、分けてない人は自分が多いほうで納得できる。

100Lを3人で分けた。
主観で分けたので、1Lと49Lと50L(それぞれABCのコップ)に分かれた。
分けた人(仮にX君)はこの3つのどれでも納得できるので後まわし。
残り2人(仮にYZ)について、
残り2人のうちのY君はAのコップとBのコップのどちらかが多いと思い、Cのコップが一番少ないと思った。
残り2人のうちのZ君がY君と同じように考えればAとBを合わせて、2人で分けたときのように解けばいい。
Z君がY君と違うコップのAを少ないと感じBとCのどちらかが最も多いと感じた場合、
Y君はAB、Z君はBCが多いと感じてるわけで、Y君とZ君が互いにBが最も多いと感じた場合だけ、不満が残る選択になる可能性がある。
Y君が自分が多いと感じているABを合わせてまた半分にしDEを作りZ君がDEの内の好きなほう、P君がDEの内あまったほうを取れば、P君に不満が残らない。
ではS君には不満が残らないだろうか?
X君が分けたA:B:Cの分け方が、1:49:50だった(Yは平等に分けたと思っている)。
Y君はABが多い思って、AB(1と49)を合わせて結果DEを作りどちらかを得て満足した。
だがZ君は、BC(49と50)が多いと思ったのに、Y君のAB(1と49)を合わせられて作ったDEのどちらかを取らされた。
Z君からすればBCを使って新たなDE作ってほしかったはずである。
Cが一番多いかもしれないと思っていたZ君が、Bと一番少ないと思ってたAを合わせて作ったDEのどちらかがCよりも多いと核心できるはずはない。
仮にZ君の取るコップをCDEの3択にしてCを取ると、Y君はDEどちらかを取ることになる。
ここまでの経緯で、AB=DEであり、X君もY君もこのDEの内容量は納得できる2人分であるはずである。
X君とY君(つまり残った2人)の、片方が一旦DEを合わせて半分にしEGの2つのコップに分け、分けてないもう片方がコップを選べば、全員が納得することが可能である。

4人の場合とか頭痛そうだからおまいらに任せる。

404 :403 ミス修正:2008/04/27(日) 13:13:52 ID:9wvAaeQD
はじめてこのスレ来たが何やら争ってるようだけど・・・コップの問題の議論ぽいので、とりあえず3人の場合から考えてみるテスト。
100Lを2人で分けた。
主観で分けたので、49Lと51Lに分かれた。
分けた人は49Lでも51L納得でき、分けてない人は自分が多いほうで納得できる。

100Lを3人で分けた。
主観で分けたので、1Lと49Lと50L(それぞれABCのコップ)に分かれた。
分けた人(仮にX君)はこの3つのどれでも納得できるので後まわし。
残り2人(仮にYZ)について、
残り2人のうちのY君はAのコップとBのコップのどちらかが多いと思い、Cのコップが一番少ないと思った。
残り2人のうちのZ君がY君と同じように考えればAとBを合わせて、2人で分けたときのように解けばいい。
Z君がY君と違うコップのAを少ないと感じBとCのどちらかが最も多いと感じた場合、
Y君はAB、Z君はBCが多いと感じてるわけで、Y君とZ君が互いにBが最も多いと感じた場合だけ、不満が残る選択になる可能性がある。
Y君が自分が多いと感じているABを合わせてまた半分にしDEを作りZ君がDEの内の好きなほう、Y君がDEの内あまったほうを取れば、Y君に不満が残らない。
ではZ君には不満が残らないだろうか?
X君が分けたA:B:Cの分け方が、1:49:50だった(Yは平等に分けたと思っている)。
Y君はABが多い思って、AB(1と49)を合わせて結果DEを作りどちらかを得て満足した。
だがZ君は、BC(49と50)が多いと思ったのに、Y君のAB(1と49)を合わせられて作ったDEのどちらかを取らされた。
Z君からすればBCを使って新たなDE作ってほしかったはずである。
Bの次にCが多いかもしれないと思っていたZ君が、Bと一番少ないと思ってたAを合わせて作ったDEのどちらかがCよりも多いと核心できるはずはない。
仮にZ君の取るコップをCDEの3択にしてCを取ると、Y君はDEどちらかを取ることになる。
ここまでの経緯で、AB=DEであり、X君もY君もこのDEの内容量は納得できる2人分であるはずである。
X君とY君(つまり残った2人)の、片方が一旦DEを合わせて半分にしEGの2つのコップに分け、分けてないもう片方がコップを選べば、全員が納得することが可能である。


Pとか使ってたのでミス直たが、考え直す余地がかなりあることに気付いた。
というか、後半は3人とも満足できるとは限らない。
ちょっと考えてみる。

405 :□7×7=4□□:2008/04/27(日) 13:35:38 ID:9wvAaeQD
考え直した

XYZの人
ABCのコップ
A+B+C=M(合計)とする

X君がABCのコップに主観で3等分に分配
X君はどれを取っても満足
Y君はBが一番多くCが一番少ない と思った
Z君はBが一番多くAが一番少ない と思った

Y君がABを使ってDEを作る
Z君がCDEの内どれかを選んだ。
Z君はMの3等分以上のを選べれば納得で、C+D+E=M(合計)でCDEのうち好きなものを選べるので納得。
Z君がCDEのうちEを選んだならY君はDを選べば納得しX君はCを選んでそれぞれ納得できる。
Z君がCDEのうちDを選んだならY君はEを選べば納得しX君はCを選んでそれぞれ納得できる。
Z君は当初、最も多いB・次に多いC・一番少ないAと思っていたのだが、CがM/3以上であると思っていたとかM/3以下であると思っていたとかは判断できずB+Aの半分がM/3以上である保障もなく、Z君はCDEのうち、Cを選ぶ可能性もある。

Z君がCDEのうちCを選んだとしよう。
A+B=D+Eなので、等分に分けたXはD+Eをコップ2杯分として納得しているはずである。
A+Bが最も多いと思っていたYも、D+Eをコップ2杯分として納得しているはずである。
よって、D+Eの内のどちらかをXに合わせるか、
もしくは、D+Eを合わせてXYの片方が分配してもう片方が選ぶかすれば、3人とも納得できる選択ができる。

406 :□7×7=4□□:2008/04/27(日) 13:38:39 ID:9wvAaeQD
ミス
× よって、D+Eの内のどちらかをXに合わせるか、
○ よって、D+Eの内のどちらかをXに選ばせるか、


407 :□7×7=4□□:2008/04/27(日) 14:07:39 ID:9wvAaeQD
分配手順を簡素にしてみた。(なぜ納得出来るか?という説明を省いた)

ABCのコップ
XYZの人

XがABCに分配
YとZがそれぞれ自分が最も多いと思うものが違った場合だけ問題になる。
YはABCの内の少ないものを置いておき、それ以外を合わせて2等分する。
ZはYが少ないと思ったコップとYが分割したした2つの計3つのコップから1つを選ぶ。
ZがYの分割したコップを選んだ場合、YはYが分割したもう片方のコップを選択し、XがYがABCの内最も少ないと感じたコップを選択する。
Zが、"YがABCの内最も少ないと感じたコップ"を選択した場合、Xが"Yが分割したコップ"のどちらかを選択し、YはXが選ばなかったほうの"Yが分割したコップ"を選べば良い。

ちょっと人数を増やして考えてみる。

408 :□7×7=4□□:2008/04/27(日) 14:39:33 ID:9wvAaeQD
×YとZがそれぞれ自分が最も多いと思うものが違った場合
○YとZがそれぞれ自分が最も多いと思うものが同じ場合

409 :□7×7=4□□:2008/04/27(日) 22:55:08 ID:o6oMxOVE
おまえらまだ解けないの?
もうジュースの賞味期限が切れましたよ。

410 :□7×7=4□□:2008/04/27(日) 23:23:41 ID:9wvAaeQD
WがABCDと4等分する
XがA・EFGと3等分する(一番少ないAを残す)
YがA・E・HIと2等分する(一番少ないEを残す)
ZがHかIの多いほうを取る。
YがHかIの余ったほうを取る。
XがEを取る。
WがAを取る。

完全には納得できるとは限らないけどある程度納得できそう。

というか、X以降の全員が"Aが一番少ない"と思ったり、Y以降の全員が"EHIのうちEが一番少ない"と思わなきゃ完全にはYXが納得出来なくなるのが問題だね。

411 :□7×7=4□□:2008/04/27(日) 23:30:32 ID:9wvAaeQD

XがA・EFGと3等分する(一番少ないAを残す)
→正確には、Xから見て一番少ないものをAとして残し、残りBCDを混ぜてXが3等分になるようにEFGを作る。当然XはEFGのどれを取っても納得できる。

412 :□7×7=4□□:2008/04/28(月) 03:09:41 ID:n+cEpg0y
ABCDのコップ
WXYZの人
空白の左が半分以上あると思ったコップで、空白の右が半分以下と思ったコップ

W-ABCD
X-A BCD
Y-A BCD
Z-A BCD
→WがDを取る。ABCを合体しXYZで改めて3等分

W-ABCD
X-A BCD
Y-B ACD
Z-B ACD
→WがDを取る。ABCを合体しXYZで改めて3等分

以下Wは略
X-A BCD
Y-AB CD
Z-CD AB
→ZがC、YがB、XがA、WがDを取って満足

つまり、全員が半分以下という判断を同じコップに下したならば、それをWに持っていって残りを3等分すればいい。
全員が、半分以上という判断をそれぞれ違うコップに下したならば、それぞれが満足出来うるように選択していけばいい。

X-ABC D
Y-D ABC
Z-D ABC
→YZの順位付けでYの2位にもZの2位にも当てはまらないABCの内のどれかを選んで満足

これらのことより、コップが4つの場合も皆が満足いくように分割できる。

413 :□7×7=4□□:2008/04/28(月) 03:30:37 ID:n+cEpg0y
またもやミス
× YZの順位付けでYの2位にもZの2位にも当てはまらないABCの内のどれかを選んで満足
   ↓
○ YZの順位付けでYの2位にもZの2位にも当てはまらないABCの内のどれかを、Xに選んで満足

理由
X-ABC D (ABCのどれでも半分以上と思っているので満足)
Y-D ABC(順位DABC)
Z-D CBA(順位DCBA)
この2つについて、YもZもDだけが4等分以上と思っているわけだけれど、YにとってD+Aは全体の半分以上と思っているのであり、
ZにとってD+Cは全体の半分以上だと思っている。
つまり、YのD+AじゃないほうのBとCはそれぞれがYにとって半分以下であり、
ZにとってD+CじゃないほうのBとAはそれぞれがZにとって半分以下であり、
ZとYはともにBが必要無いわけだから、XにBを選ばせればXは満足する。
そして、再度ACDを合わせてWYZの3人で3等分すれば全員が満足できることになる。

少し変化して
X-AB CD
Y-D ABC
Z-D CBA
という場合、XもYもZもCを半分以下と思っているわけだから、CをWにくれてやって残ったABDをXYZで3等分すれば全員満足する。

X-AB CD
Y-C ABD
Z-D ABC
とした場合、ZにD、YにC、CにAかB、WにCの取った余り を渡して全員半分以上で満足。


414 :□7×7=4□□:2008/04/28(月) 03:33:38 ID:n+cEpg0y
というわけで、おそらくこの要領で、5以上も全員満足行く結果が得られるだろうと思う。
数式化は俺には無理ぽ

415 :□7×7=4□□:2008/04/28(月) 04:45:36 ID:n+cEpg0y
半角で空白してたからかなり見にくくなっちゃった。

VWXYZの人
ABCDEのコップ

V-ABCDEに分配
W-ABC:DE
X-DE:ABC
Y-DE:BAC
Z-DE:CBA
(:の左側が、その人の主観でそれぞれ半分以上あると思っているコップ)

5人の分配はこの場合に結構困った。
けど、
XYZの3人分について、
DEAを混ぜて3等分にすれば十分だった。
WとVには、BとCのコップを分配。

DEAをXYZ3人で3等分して満足ていうのは、3人ともDEAの合計がABCDEの合計の3/5以上あると思ってるときだけ。

XYZの3人ともDEのコップに半分以上入ってると思っていて、ABCのコップは半分も入ってないと思っているわけだから、
D+E+A+B+C=全体。
B+C=全体の2/5以下(XYZはBもCも1/5以下と思ってる)
よってD+E+A=全体の3/5以上になる。
D+E+Cとしても、D+E+Bとしても、XYZの3人から見れば全体の3/5以上に見える。

奇数についても偶数についても、以後同じことの繰り返し。
V-ABCDE
W-ABC:DE
X-DE:ABC
Y-DE:ABC
Z-D:ABCE

Yから見てD+E+A=全体の3/5以上
Zから見てD+A+E=全体の3/5以上
よって、XとYとZでADEを3等分、BCをWとVで分けて全員満足。

416 :□7×7=4□□:2008/04/28(月) 06:14:44 ID:n+cEpg0y

修正
× XYZの3人ともDEのコップに半分以上入ってると思っていて、ABCのコップは半分も入ってないと思っているわけだから、
○ XYZの3人ともDEの各コップに1/5以上入ってると思っていて、ABCの各コップは1/5も入ってないと思っているわけだから、

417 :□7×7=4□□:2008/04/28(月) 13:54:25 ID:n+cEpg0y
全体の水の量を1とする。
アルファベットのA〜はコップ、〜Zは人。
記号の:より左のコップは、その人が半分以上だと思って配分に納得しているコップであり、:より右のコップはその人が半分以下だと思って貰っても納得しないコップである。

X-ABC
Y-A:BC
Z-A:BC
YとZから見た感覚→A+B≧2/5
YとZがA+Bを互いが納得するように2人で分ける
Xは残りのCを取る

4個
W-ABCD
X-ABC:D
Y-D:ABC
Z-D:ABC
YとZから見た感覚→D+A≧2/5
YとZがD+Aを互いが納得するように2人で分ける
XとWはB+Cを互いが納得するように2人で分ける

5個
V-ABCDE
W-ABCD:E
X-E:ABCD
Y-E:ABCD
Z-E:ABCD
XとYとZから見た感覚→E+A+B≧3/5
XYZがE+A+Bを3人とも納得するように3人で分ける
WとVはC+Dを互いが納得するように2人で分ける

6個
U-ABCDEF
V-ABCDE:F
W-F:ABCDE
X-F:ABCDE
Y-F:ABCDE
Z-F:ABCDE
WとXとYとZから見た感覚→F+A+B+C≧4/6
WXYZがF+A+B+Cを4人とも納得するように4人で分ける
VとUはD+Eを互いが納得するように2人で分ける

以下7個以上の場合も同じ事の繰り返し。
全員が完全に満足いくようにするのは可能。
一般化もたぶん可能だけど、一般化の仕方とか知らないからこれで俺の役目は終了。

6個
U-ABCDEF
V-ABCDE:F
W-ABCDE:F
X-F:ABCDE
Y-F:ABCDE
Z-F:ABCDE
の場合
XとYとZから見た感覚→F+A+B≧3/6
XYZがF+A+Bを3人とも納得するように3人で分ける
VWUはCDEをテキトーに3人に分ける
で、5個の場合とやることは同じである。

418 :□7×7=4□□:2008/04/28(月) 14:09:01 ID:n+cEpg0y
またミスった。半分に分けるってなってる部分は全部「n等分に分ける」と思って下さい。

419 :□7×7=4□□:2008/04/28(月) 16:15:50 ID:n+cEpg0y
ああ、>>26見て気付いた。
人をA1、A2・・・・An-1、An
コップをB1、B2・・・・Bn-1、Bn とか書いて考えたらいいのか。

420 :□7×7=4□□:2008/04/28(月) 21:06:24 ID:qfgSfaKX
正直読む気がしない。
>>221>>400のでいいんじゃないの。

421 :□7×7=4□□:2008/04/28(月) 21:07:14 ID:qfgSfaKX
ごめん>>221じゃなくて>>211ね。

422 :□7×7=4□□:2008/04/28(月) 22:10:00 ID:n+cEpg0y
>>211の場合
最後に交換される人は、交換相手とは均等に見えるかもしれないが、他の人と比べて量が減ったと見えるかもしれない。
これは満足とは言えない。
交換が何度でも出来るという条件にすれば、全員が納得できる配分にいつかできるかもしれないが、全員が永遠に納得できないかもしれない。

100 100 100 100 80
で、最後に80の奴が100の奴に交換を迫ったら100の奴はどう思うか考えればわかる。

また、他人から見ればあるコップの量が100に見えたものでも自分から見ればそのコップの量が50に見えるかもしれない。

なので、>>211は現実的ではあるかもしれないが論理的かどうかは疑問が残る。

423 :□7×7=4□□:2008/04/28(月) 22:16:51 ID:n+cEpg0y
>>400なら納得できる。
が、納得するまでというのがいつまでも納得できないかもしれない。
いつまでも納得できないかもしれないということは納得できずに寿命が来ても分配が済まない可能性がある。
これもまた現実的だけど論理的とは言えない。

なんどでも試して答えを出すってのは、
100+100=○ で ○に入る数字を答えろって問題で、答えとして「1から順番に数字を入れていけばいつか答えが出る」という答え方をしてるようなもの。
そりゃ現実的には答えを1から順番に発していけばいつかは答えにぶち当たるかもしれないが、論理的とは言えない。


424 :□7×7=4□□:2008/04/28(月) 22:31:29 ID:n+cEpg0y
誰かが、自分がちょうどn等分になってると思うようにn個のコップにジュースを入れ、
分配人以外のn-1人の全員が、n個の全てのコップについてどれが1/n以上に見えてどれが1/n以下に見えるかをアンケートを取る。

アンケートに従って、
同一コップに全員が1/n以下と思ったものがあったならそのコップを分配人に渡して、分配人とそのコップを取り除いて、1人1コップが抜けた状態で再度分配からやり直す3人以下にまで持っていって、3人で3等分する。
同一コップに、ある一人を除いた全員が1/n以下だと判断したものがあったなら、そのコップをそのある一人に渡して、1人1コップが抜けた状態で再度分配からやり直す3人以下にまで持っていって、3人で3等分する。
その他の場合は全て、全員が1/n以上と思うコップを分配できる。


425 :□7×7=4□□:2008/04/28(月) 23:29:50 ID:n+cEpg0y

コップ3つの場合
Zが分配

■ABC…コップ
X○××
Y○××
.;

BかCのいずれかを分配人Zに渡して、残り2つ2人とも納得するように分けて全員納得。

4つの場合
分配人Z
■ABCD…コップ
X×○××
Y○×○○
W×○××
.;

Yと分配人Zのそれぞれに、にABCのいずれかを渡し
残ったコップを合わせてXとWで半分コ

426 :□7×7=4□□:2008/04/29(火) 00:20:04 ID:sfGwAOPt
>>425
>計量カップなどはなくコップの形も違うので感覚でしか分けることができません
最後に残ったコップをどうやって半分コするの? アンケートを取って3等分?
残り2つ2人とも納得するように分けて全員納得?

>>423で>が、納得するまでというのがいつまでも納得できないかもしれない。
って言ったの自分でしょ?「最終的に納得するまで分ける」なら
「最初から納得するまで分ける」でよくない?

 …永遠に納得しないかもしれないけど


427 :□7×7=4□□:2008/04/29(火) 01:33:53 ID:+YnEJoYn
>>426

少し上でも説明してることだけど改めて。

>>425
分配人Z
■ABCD…コップ
X×○××
Y○×○○
W×○××

図の意味は、
Zは自分で分配したのでどれを取ることになっても納得。
XはBを1/4以上と思っていて他のコップは1/4以下と思っている。
YはA・C・Dのそれぞれを1/4以上と思っていて、Bは1/4以下と思っている。
WはBを1/4以上と思っていて他のコップは1/4以下と思っている。

当然、ジュース全部を1とすれば、ABCDの合計は1。
X君からすれば、C+Dは1/4以下+1/4以下=2/4以下となり、A+B=2/4以上ということになる。
W君からしてもX君と同じく、Bだけが1/4以上で、その他が1/4以下に見えているので、B+AでもB+CでもB+DでもW君から見れば2/4以上ということになる。
つまり、X君にとってもW君にとっても、B+AかB+CかB+Dが2/4以上。
Y君はA・C・Dのいずれかを貰えば1/4以上で納得するし、分配人のZ君はABCDのいずれも1/4として分配してるのだからどれを取っても納得する。

この例の場合はY君はAでもCでもDでもどれを取っても大丈夫なので、仮にAを取ってみる。
Z君はB以外、例えばCを取ってみる。
X君とW君で、残り2つのBとDを分けなければならないが、Dはお互いに不満であるので一見満足できないように見える。
だが、B+Dは、X君にとってもW君にとっても、2/4以上(コップ2杯分以上)に見えている。
ということは、B+Dを合わせてから2等分すればいいはずである。

X君とW君で、BとDを合わせて2等分というのは、
どちらが分配人になっても構わないが、例えばX君が分配人として、
X君が2つのコップに2等分する。
分配してないほうのW君がその2つの内の多いと思うほうを取ればW君は満足するし、X君も自分が分配したのだから満足する。

428 :□7×7=4□□:2008/04/29(火) 02:26:50 ID:+YnEJoYn
分配人Z
■ABCD…コップ
X×○××
Y○×××
W×○××

Y君を少し変えてみた。
この場合とりあえずXYW(分配人以外全員)が1/3以下と思っているCかDのコップを、分配人Z君に渡す。
Z君はCのコップでもDのコップでも、自分で分配したのだから納得である。
CでもDでもいいけど、仮にZ君にはDのコップを渡してみる。すると残りは

■ABC
X×○×
Y○××
W×○×

となる。
Y君がAを取って、X君とW君がB+C(←ABCDの合計の2/4以上と思っている)を合わせて、X君とY君で互いに納得するように2等分する方法もあるし、

他にも、
Z君にDのコップが渡ったので、XYWの3人がA+B+Cを合わせて改めて配分者を決め3等分してもいい。
X君Y君W君のいずれにとっても、Z君に渡したDのコップは全体の1/4以下と思っているので、A+B+C="ABCD合計の3/4以上"(←コップ3杯分以上)のはずである。
→4等分の問題が、3等分の問題に。

429 :□7×7=4□□:2008/04/29(火) 02:28:43 ID:+YnEJoYn
>>428の8行目
×1/3以下
○1/4以下
またスマソ

430 :□7×7=4□□:2008/04/29(火) 11:37:00 ID:cD6IC7eW
  A B C D
X ×○○○
Y ○○○×
W○○×○

431 :□7×7=4□□:2008/04/29(火) 11:57:17 ID:+YnEJoYn
>>430
その場合、誰がどの順番で好きな物を取っていっても構わない。

回答例
X君はBを取り
Y君はAを取り
W君はDを取り
Z君は余ったCを取る
全員満足。

例えば、
W君はAで満足
X君はBで満足
Y君はCで満足
という風に、満足なコップを全員に配れる場合ならそう配れば問題にならない。


432 :□7×7=4□□:2008/04/29(火) 12:30:55 ID:cD6IC7eW
あれ?多いモノに勾配はつかないの
自分で分けたのではないなら一番多そうなものから採ると思うんだけど

◎・・・とても多い △・・・少し多い ○・・・等分 ×・・・少ない
  A B C D
X ×◎△○
Y △◎○×
W○◎×△


433 :□7×7=4□□:2008/04/29(火) 12:55:15 ID:+YnEJoYn
>>432
なんのためのアンケートだよ。
等分以上満足(等分でも満足)、が前提だろ。
等分では満足できないのなら、はじめに配った分配人は自分のどれにも満足できない。

あと記号の付け方が
◎・・・とても多い △・・・少し多い ○・・・等分 ×・・・少ない
ってのもわからない。
△の少し多いというのは当分以上という意味なのか、等分未満だから○より定評価の△なのか?

多いものに勾配を付けたら絶対に全員が満足出来る結果なんて永遠に来ない。
どんな選択肢を使っても。
>>432の図で言えば、XはB以外では満足できずYもB以外では満足できず、WもB以外では満足できないということになる。

等分に分けようとしてるのに、なぜに「等分以上と思ったコップでも一番多いものじゃないから納得できない」となるんだ?

合計の1000の水が、220・240・260・280 で平均250だが、280に見えたコップしか納得できない?260でも納得できるんじゃないのか?

仮に500の水を2人で分けるとき、分配人が分けたものを、コップを選ぶ側が 240:260 に見えたとして、コップを選ぶ側が"自分から見て280は無いと納得できない"なんて言い出したら互いが永遠に納得できなくなる。

等分以上なら納得できるとして考えないと、どんな方法を使っても全員納得なんて無理。


434 :□7×7=4□□:2008/04/29(火) 13:02:22 ID:+YnEJoYn
×定評価
○低評価

10行目からの4行はミスと思ってスルーな。

アンケートは当然、
「等分以上と思うものに○」「等分以下と思うものに×」だ。

435 :□7×7=4□□:2008/04/29(火) 13:08:48 ID:cD6IC7eW
三角は単なる記号です
そんなに熱くならなくても勾配は考慮しないの一言でいいのに
前レスのやり取りでもあるように前提となる仮定はかなり重要な要素です
そこが省かれていると、確認のための反論や突込みが入るのは当たり前ですよ

最低1/n取得の条件ならばその分け方でいけると思います

436 :□7×7=4□□:2008/04/29(火) 13:16:58 ID:+YnEJoYn
>>435
いや、「そんな事くらいわかるだろ」と思ってしまって、ちょっと赤くなってしまいました。スマソ。


437 :□7×7=4□□:2008/04/29(火) 13:44:23 ID:GG30eI//
>>436
個々の状況について「この場合はOK」ということは言えてるけど、「4人の場合はOK」というのはまだだよね?
でも本当に良く考えられてると思う。3人の場合は全てOKなのは考えてみてわかりました。
4人の場合もいけそうな感じするんだけどね。どうなんだろ?

あとちょっと言わせてもらうけど、書き込む前にもう少し内容の確認を。
後で訂正が入りまくると読みにくいよ。やっぱり。
細かいことだけど、>>434も「以下」じゃなくて「未満」だよね?

438 :□7×7=4□□:2008/04/29(火) 13:58:53 ID:+YnEJoYn
>>437
そう。未満のほうがわかりやすいね。
アンケートで、ちょうど半分と思ったやつを、○としても×としても実は問題は起きないけどね。

ちなみに、>>427-428あたりは4人の説明になってます(^_^;)

一応、7人とか10人とか、もっと多くの場合にも大丈夫みたいですが、かなりややこしくて説明の仕方を考え中です


439 :□7×7=4□□:2008/04/29(火) 14:19:59 ID:GG30eI//
それは読んだけど、言えたのは「4人の場合の特定の○×の状況ではOK」ということでしょう?
「4人の場合はOK」というのはまだ言えてないと思うんだけど...。違うの?

440 :□7×7=4□□:2008/04/29(火) 14:22:13 ID:+YnEJoYn
A1〜Anを人
B1〜Bnをコップ
とし、分配人はAn=分配人とすると、

分配人Anはどれを取っても納得するので最後の余りのコップを取ればいいということで、表には表さない。
A1〜An-1 のn-1人について、

■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;×:×:×:×:×:…:×:×
A2|×;○:×:×:×:×:…:×:×
A3|×;×:○:×:×:×:…:×:×
A4|×;×:×:○:×:×:…:×:×
A5|×;×:×:×:○:×:…:×:×
A6|×;×:×:×:×:○:…:×:×
.;|
An-1|×:×:×:×:×:×:…;○:×


当然、半分以上で納得する○の部分が誰一人被らなければ、表の中に1個のコップの縦に全て×が付いて余り、それを分配人にわたせばNを一つ減らして再分配することもできる。

■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;○:×:×:×:×:…:×:○
A2|×;○:×:×:×:×:…:×:×
A3|×;×:○:×:×:×:…:×:×
A4|×;×:×:○:×:×:…:×:×
A5|×;×:×:×:○:×:…:×:×
A6|×;×:×:×:×:○:…:×:×
.;|
An-1|×:×:×:×:×:×:…;○:×

この場合も、A2にB2を配り、A1にA2を配れば、Anは配分者に分けることが出来る。

441 :□7×7=4□□:2008/04/29(火) 14:27:35 ID:+YnEJoYn
ミス
×A2にB2を配り、A1にA2を配れば、Anは配分者に分けることが出来る。
○A2にB2を配り、A1にB2を配れば、コップBnは配分者に分けることが出来る。

ややこしくてミスる。
思ったより表がズレてなくてヨカタ。

>>439
それもほとんどのパターンを試して大丈夫だったけど、法則を見つけなきゃだね。
とりあえず、配分者はどのコップを取ってもいいので、コップがn個ということと人がn-1個ということから法則が掴めそうなんだよね。

442 :□7×7=4□□:2008/04/29(火) 14:44:17 ID:+YnEJoYn
■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;○:○:○:×:×:…:×:×
A2|○;○:○:○:×:×:…:×:×
A3|○;○:○:○:×:×:…:×:×
A4|×;×:×:×:○:○:…:○:○
A5|×;×:×:×:○:○:…:○:○
A6|×;×:×:×:○:○:…:○:○
.;|
An-1|×:×:×:×:○:○:…;○:○


この場合、B5〜Bnまでのn-4個のコップと、A4〜An-1までのn-4人の人の数が同じなので、A4〜An-1が自分の納得行くコップを取り合えばいい。
A1〜A4の4人は、B1〜B5の5個のコップから好きなものを取り、残った一個を分配人Anに渡せばいい。

少しいじくって
■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;○:○:○:×:×:…:×:×
A2|○;○:○:○:×:×:…:×:×
A3|○;○:○:○:×:×:…:×:×
A4|×;×:×:×:○:○:…:○:○
A5|×;×:×:×:×:○:…:○:○
A6|×;×:×:×:○:○:…:○:○
.;|
An-1|×:×:×:×:○:○:…;○:○

A5のB5のコップを×にしてみた。
この場合、A5が先にコップを取ってから残りのA4〜An-1がコップを取って(以後さっきと同じ。

また、この場合、単純に、A1〜A3 An のグループにコップB1〜B4を配り、A4〜An-1のグループにはコップB5〜Bnを配るという方法でもいい。


443 :□7×7=4□□:2008/04/29(火) 14:56:14 ID:+YnEJoYn
■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;×:×:×:×:×:…:×:×
A2|×;○:×:×:×:×:…:×:×
A3|×;×:○:×:×:×:…:×:×
A4|×;×:×:○:×:×:…:×:×
A5|×;×:×:×:○:×:…:×:×
A6|×;×:×:×:×:○:…:×:×
.;|
An-1|×:×:×:×:×:×:…;○:×

ある一つのコップ(この図ではBnのコップ)に全員から×が付けば、全員から×の付いた(全員がn等分以下と思っている)そのコップを分配者に渡して、
分配者とその不満コップを除いて、つまりnを一つ減らして再分配すればいい。
例えば、6等分しようとして、分配者がコップABCDEFに等分して、Bのコップについて全員が×を付けたならそのBは分配人に渡せし、
ACDEFの5つのコップ(全員、この5個のコップの合計は、はじめの6個の5/6より多いと思っている)を一旦合わせてからまた5人で分配する。


■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;×:×:×:×:×:…:×:○
A2|×;○:×:×:×:×:…:×:×
A3|×;×:○:×:×:×:…:×:×
A4|×;×:×:○:×:×:…:×:×
A5|×;×:×:×:○:×:…:×:×
A6|×;×:×:×:×:○:…:×:×
.;|
An-1|×:×:×:×:×:×:…;○:×


一つのコップに×が付かないパターンを考えると、
このように、誰かが○を2つ以上付けなければならない。
○を2つ付けたところで、この場合はA1はB1を取れる。

444 :□7×7=4□□:2008/04/29(火) 15:57:22 ID:+YnEJoYn
■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;×:×:×:×:×:…:×:×
A2|×;○:×:×:×:×:…:×:×
A3|×;×:○:×:×:×:…:×:×
A4|×;×:×:○:×:×:…:×:×
A5|×;×:×:×:○:×:…:×:×
A6|×;×:×:×:×:○:…:×:×
.;|
An-1|×:×:×:×:×:×:…;○:×


もしこの図で、誰がどれだけ○を足したところで、A1がB1のコップを、A2はB2のコップを、A3はB3のコップを、An-1はBn-1のコップを、分配できして納得できることには変わりが無い。


■|B1:B2:B3:B4:B5:B6:…:Bn-1:Bn
A1|○;○:○:○:×:×:…:○:○
A2|×;×:○:×:×:×:…:×:×
A3|×;×:○:×:×:×:…:×:×
A4|×;×:×:○:×:×:…:×:×
A5|×;×:×:○:○:×:…:×:×
A6|×;×:×:×:×:○:…:×:×
.;|
An-1|×:×:×:×:×:×:…;○:×

という風な図の場合、
コップB1とB2とBnを、A1しか○が付いていない。
A1にとって、コップ2つ、例えばB1とBnだけなら分配人Anと2人で選べるがコップ3つをA1だけで選ぶことは出来ない。
この場合、A1がB1とB2とBnのどれかを取っても良い。
A2〜An-1の誰もがB1とB2とBnのいずれも等分以下だと思っていたので、A1が仮にB1 B2 Bnの内B1のコップを取ったとして、残りのB2〜Bnを合わせてn-1等分すれば納得できるはず。

B1=1/n以下 に見えるということは
全体-B1=(n-1)/n以上 に見えるということ。

445 :□7×7=4□□:2008/04/29(火) 16:18:32 ID:+YnEJoYn
>A2〜An-1の誰もがB1とB2とBnのいずれも等分以下だと思っていたので、A1が仮にB1 B2 Bnの内B1のコップを取ったとして、残りのB2〜Bnを合わせてn-1等分すれば納得できるはず。

→A2〜An-1の誰もがB1とB2とBnのいずれも等分以下だと思っているので、A1が等分以下のB1を取って、
A1以外の全員(A2〜An)で、残ったn-1個のコップを全て合わせてから分配しなおせば、nを1減らせる、ということ。

他人が、自分から見て等分以下だと思っているコップを取って行くことは納得出来る。
あるP君を除いた全員から見て等分以下だと思っているコップを、唯一等分以上に見えてるP君が取っていっても、P君以外は不満が無いはず。

極端な話、nが100として、100人で誰かが配分して、全員から全てのコップについて等分以上と思うか等分未満と思うか○か×かでアンケートを取れば、
一回のアンケートでは全員納得行かなくても、全員が納得するように少なくとも誰か一人のコップを決めることは出来るので、
最悪の場合でも
100人で分配→全員が納得出来るように1人がコップを取り→99人が残りを分配(nを99にして分配てこと)→全員が納得出来るように1人がコップを取り→98人が残りを分配→・・・
と続けていくと必ず全員が納得する結果が得られる。

446 :□7×7=4□□:2008/04/29(火) 16:20:38 ID:+YnEJoYn

>P君以外は不満が無いはず。
>P君以外も不満は無いはず。

当然P君も不満は無い。

447 :□7×7=4□□:2008/04/29(火) 17:14:26 ID:+YnEJoYn
(1)
現在の人数=nとする。
ジュースの分配人を決めn個のコップに等分に分配する。

アンケート
自分から見て等分以上に見えるコップに○
自分から見て等分未満に見えるコップに×
を全てのコップについて回答してもらう。

アンケート結果
全員が共通して×を付けているコップがあれば、そのコップを分配人に渡し、nを1減らして(1)に戻る。
一人だけが○を付けているコップがあれば、そのコップをその一人に渡し、nを1減らして(1)に戻る。
それ以外の場合は、全員が分配できる。


たぶん合ってると思う。

448 :□7×7=4□□:2008/04/29(火) 17:16:40 ID:+YnEJoYn
×全員が分配できる
○全員に(納得いくように)分配できる

449 :□7×7=4□□:2008/04/29(火) 17:48:13 ID:+YnEJoYn
分配人A5
■|B1:B2:B3:B4:B5
A1|○;×:×:×:×
A2|○;×:×:×:×
A3|×;○:○:○:○
A4|×;○:○:○:○

この場合は>>447だけじゃ不十分だね。
この場合は、○を最も多く付けているA3とA4のコップを確定させれば、A1とA2とA5の3人で余った3つのコップを合わせて3人で分ければいいんだけど。


分配人A6
■|B1:B2:B3:B4:B5:B6
A1|○;○:×:×:×:×
A2|○;○:×:×:×:×
A3|○;○:×:×:×:×
A4|×;×:○:○:○:○
A5|×;×:○:○:○:○

この場合も、○を最も多く付けているA4とA5のコップを確定させれば、A1とA2とA3とA6の4人で余った(A4とA5が取らなかった)4つのコップを合わせて4人で分ければいいんだけど(nを1減らせる)。

ややこしい

450 :□7×7=4□□:2008/04/29(火) 18:19:08 ID:+YnEJoYn
分配人A8
■|B1:B2:B3:B4:B5:B6:B7:B8
A1|○;○:×:×:×:×:×:×
A2|○;○:×:×:×:×:×:×
A3|○;×:×:×:×:×:×:×
A4|×;×:○:×:×:×:×:×
A5|×:×:○:×:×:×:×:×
A6|×;○:×:○:○:○:○:○
A7|×;×:×:○:○:○:○:○

○を最も多く付けているA6とA7のコップを確定させてnを2減らす(A6はB2以外を取る)

A1・A2・A3が等分以上あるように見えるのが、3人とも同じコップの2個以下の場合にだけ問題が起きるわけだ。
P人が等分以上あるように見えるのが、P人とも同じコップのP-1個以下の場合にだけ問題が起きる。

ややこしすぎる。

451 :□7×7=4□□:2008/04/29(火) 18:39:10 ID:+YnEJoYn
(1)
現在の人数=nとする。
ジュースの分配人を決めn個のコップに等分に分配する。

アンケート
自分から見て等分以上に見えるコップに○
自分から見て等分未満に見えるコップに×
を全てのコップについて回答してもらう。

アンケート結果
全員が共通して×を付けているコップがあれば、そのコップを分配人に渡し、nを1減らして(1)に戻る。

1人だけが○を付けているコップがあれば、そのコップをその1人に渡し、nを1減らして(1)に戻る。

2人だけが○を付けている2つのコップがあれば、その2つのコップをその2人に渡し、nを2減らして1へ戻る。

3人だけが(以下略

4人(ry
.:

分配人A6
■|B1:B2:B3:B4:B5:B6
A1|○;○:×:×:×:×
A2|○;○:×:×:×:×
A3|○;○:×:×:×:×
A4|×;×:○:○:○:○
A5|×;×:○:○:○:○

この場合、A4とA5で、B3・B4・B5・B6の内の2つをA4とA5に配る。
で、nを2減らす=残り4個のコップを合わせて残り4人で分配し直す。
(A1にとってもA2にとってもA3にとっても、B3・B4・B5・B6のいずれも等分以下なので、このうち2つをA4とA5の2人に配っても不満は起こらない。)

452 :□7×7=4□□:2008/04/29(火) 19:50:49 ID:+YnEJoYn
分配人A8
■|B1:B2:B3:B4:B5:B6:B7:B8
A1|○;×:×:×:×:×:×:×
A2|○;×:×:×:×:×:×:×
A3|○;×:×:×:×:×:×:×
A4|×;×:×:○:○:○:○:○
A5|×:○:○:×:○:○:×:×
A6|×;×:○:○:×:×:×:○
A7|×;○:×:○:×:○:○:×
この場合は>>451の方法じゃ無理か。

(1)
現在の人数=nとする。
ジュースの分配人を決めn個のコップに等分に分配する。

アンケート
自分から見て等分以上に見えるコップに○
自分から見て等分未満に見えるコップに×
を全てのコップについて回答してもらう。

アンケート結果
全員が共通して×を付けているコップがあれば、そのコップを分配人に渡し、nを1減らして(1)に戻る。

1人だけが○を付けているコップがあれば、そのコップをその1人に渡し、nを1減らして(1)に戻る。

(2)
A1の満足コップ数がP個で、P+1人の誰もがA1と同じコップ以外に○が付いていない場合、P+1人の彼らはどのコップも取らずに後回しにする。
A2〜An-1について、同じようにする。

(2)にて後回しにならなかった人は全員、(2)に当てはまったコップ以外できちんと納得できるように分配できるはずなので、(2)に当てはまらなかったコップで全員が納得するように分配する。

(2)にて後回しになった人は全員、nを人数と同じだけ減らして余ったコップも全部足して(1)に戻る。


453 :□7×7=4□□:2008/04/29(火) 19:52:41 ID:+YnEJoYn
×nを人数と同じだけ減らして
○nを後回しになった人数と同じになるように減らして

454 :□7×7=4□□:2008/05/01(木) 13:10:41 ID:XR9QMoQY
ド・モルガンの法則とかいうやつの存在を今知った。
論理和∨、論理積∧、否定¬の論理記号を使って記述すると、このように表現できる。

¬(P∨Q)=¬P∧¬Q
¬(P∧Q)=¬P∨¬Q
とかいうの。
ウィキペディアに載ってた。
これ使えばもう少しわかりやすくなるかも。

455 :□7×7=4□□:2008/05/01(木) 13:37:16 ID:XR9QMoQY
排他的論理和^

P^Q=(P ∧ ¬Q) ∨ (¬P ∧ Q)
P^Q=(P ∨ Q) ∧ (¬P ∨ ¬Q)
P^Q=(P ∨ Q) ∧ ¬(P ∨ Q)

これも。

456 :□7×7=4□□:2008/05/02(金) 01:19:51 ID:Uj51z4tk
>>455
最後間違ってるよ
P^Q=(P ∨ Q) ∧ ¬(P ∧ Q)


457 :□7×7=4□□:2008/05/02(金) 02:16:23 ID:890LYv/u
>>456
修正thx

458 :□7×7=4□□:2008/05/03(土) 19:24:30 ID:2BPjXXXR

■B1B2B3B4B5B6B7B8
A1○×××××××←満足コップ1
A2○○××××××←満足コップ2
A3×○○×××××←満足コップ2
A4○×○×××××←満足コップ2
A5○×○×××××←満足コップ2
A6○○○○○○○○
A7○○○○○○○○

この場合、A1〜A5の各人の満足コップの最大値は2。
B1〜B3の3つがA1〜A5の5人に分配しきれないので後回しにして考えたい。

>>452
>(2)
>A1の満足コップ数がP個で、P+1人の誰もがA1と同じコップ以外に○が付いていない場合、P+1人の彼らはどのコップも取らずに後回しにする。
>A2〜An-1について、同じようにする。

これには今回当てはまらない。
A1〜A5までのP(満足コップ数)は1か2になり、Pが2の時には後回しに出来ない。
Pが3として見たときだけはじめて人数がP+1より上回りA1〜A5を後回しに出来る。
なので>>452の(2)以降は若干変更しなきゃならない。

459 :□7×7=4□□:2008/05/15(木) 11:31:44 ID:SrWAaRRy
むずいです
もっと簡単な問題求む

460 :□7×7=4□□:2008/06/30(月) 00:15:04 ID:3sUBkX4h
2つの量AとBとを見比べて
A<B、A=B、A>B
の3通りから判断するという方法と

1つの量Aを見て
A<1/N、A=1/N、A>1/N (Nは人数、分配物の総量を1とする)
の3通りから判断するという方法はまったく別種のものだ

この類の問題においては前者の判断方法のみを用いて解くことが
暗黙の条件であるように思うのだがどうだろうか

461 :460:2008/06/30(月) 00:23:30 ID:3sUBkX4h
例えば総量1?のジュースを2つのコップA・Bに分け
A<B、A=B、A>Bから判断してもらう場合、
>>460の前者の方法では常に結論は1通りであるが
後者の方法ではどちらのコップを見せるかによって
結論が変わりうる、という問題がある

462 :□7×7=4□□:2008/06/30(月) 00:25:04 ID:3sUBkX4h
「?」が余分ですスマソ

463 :□7×7=4□□:2008/07/01(火) 16:28:38 ID:ACESSoGL
この問題の登場人物は現実の、生身の人間ではないのだ。
1つのコップに入ったジュースを見て、それが1/N以上なのか未満なのかといったことが『わかる』のだ。
正しくわかるという意味ではない。確信を持って答えられるということ。
そしてそれ以降、その答えに矛盾するようなことは絶対にしない。


464 :□7×7=4□□:2008/07/05(土) 18:58:33 ID:jns2Yiu7
だれかN人が任意の回数発言できる会議で
発言者全員が納得できる結論を導き出す方法を考えてくれ

465 :□7×7=4□□:2008/07/05(土) 20:07:00 ID:i9SW8Rf2
>464
全員が「参加する」ことには納得しているくらいだからから、納得できる結論は
必ず「存在する」と思う。
任意のテーマについて可能かどうかは疑問。

466 :□7×7=4□□:2008/07/07(月) 02:15:42 ID:1XviRCb9
>>464
Nが仮に2としても、必ず納得する方法は無い。
A君が「パソコンCを壊さなければ納得しない」といい
B君が「パソコンCを壊すと納得しない」という。
納得する条件について、片方が納得すれば必ず片方が納得しない。
この場合、互いが確実に完全に納得できる方法などない。

467 :□7×7=4□□:2008/07/07(月) 04:40:58 ID:BOgwRM9M
A1〜Anを人
B1〜Bnをコップ

----------
(1)A1は『ジャストN分の1』のジュースと思える量を、
コップB1に取り分ける。

----------
(2)A2は、コップB1の取り分け量を見て…、

(a)「『ジャストN分の1』より多い」と判断したら、
 コップB1の量が『ジャストN分の1』となるよう、
 コップB1よりジュース全体に、少量だけ戻す

(b)「『ジャストN分の1』以下」と判断したらスルー

----------
(3)次いで、A3、A4、A5、…、An-2、An-1までの各人が、
順次、上記(2)と同じことを行う。

----------
(4)Anは、An-1が判断した後の、取り分け量を見て…、

(a)「『ジャストN分の1』またはそれ以上」と判断したら、コップB1を取る。

(b)「『ジャストN分の1』未満」と判断したら…、

上記の(2)で(a)の判断をした人
(「『ジャストN分の1』より多い」と判断して量を調整をした人)
のうち、最後の人(仮にAkとします)がそのコップを取ります。
(もし、A2以下の全員が(b)の判断なら、A1がコップB1を取ります)。

これで1人分が確定。

----------
(5)Akを除いて、上記(1)〜(4)のプロセスを、N-1回繰り返せば終了。

468 :□7×7=4□□:2008/07/07(月) 13:33:36 ID:nyOh1XAK
>>467
うん、合ってる。原理的には>>17と似てるね。
「オークション方式」といったところかな。

469 :464:2008/07/07(月) 13:37:28 ID:x4wMK9/P
>>465
ほほーう、言われてみれば確かにそうですね
>>466
つまりN人の意見の内容が完全に背反でなければ完璧な結論が存在
してもおかしくないということですねー、ははーん
(何言っているのか自分でも分かっていない)


そろそろこのスレ(N人が任意の回数発言できる会議)で
ジュースの命題に決着がつかないもんかと思ってつい書き込んで
しまった書き込みだとはいまさら言えねえ……。

470 :□7×7=4□□:2008/07/08(火) 17:19:51 ID:69ktYhSu
>>467
1人が確定した時点で残った人達は「今取られた量は1/n未満だ」と思っている。
だから、前の人が取った量より多いと思う量を取らなければそれを1/nだとは思えない。
結果、後続の人達は前の人が取った量より多いと思う量を取ることになる。
だが、そんな取り方をしてると途中で取れなくなる可能性がある。

登場人物はコップの比較をしないという前提がない限りは>>17やそれに類する解答は正解にならない。
(コップの形が違うので正確な比較ができない と 比較をしない は同義ではない)

471 :□7×7=4□□:2008/07/09(水) 03:10:23 ID:SPkbJOl7
467です。

>>470

467に書いたことは、いったん脇に置いといて。

「ジュース選択の際は、
 残りのジュースの全量を、
 残った人数分のコップ全てに取り分けて、
 その状態から選択を行う」

(もちろん空のコップはない。
 どのコップにも、ある程度の量のジュースを必ず入れる)

というやり方であれば、
470さんの懸念(途中で取れなくなる可能性がある)は、
回避できると考えますか?

それとも、このやり方でも、
470さんが懸念される
「途中で取れなくなる状況」が
発生する可能性があると考えますか?

(なお、今は単に、
 470さんの懸念を回避する手段を考えているだけです。
 当初目的の
 「コップをとる全員を満足させるためのプロセス」
 は考えていません)。


472 :□7×7=4□□:2008/07/09(水) 19:17:24 ID:hy/c5+s0
全コップの中でもっとも量が多いものは絶対1/nより多い。
ジャスト1/nを目指すなら、もっとも量が多いコップは取ってはいけない。
言い換えるなら、残されるコップの中に自分が取った量より多いものが最低一つはなければいけない。
最後の人は1/nより多く取らされる可能性があるが損はしないのでよしとする。

以上の条件でこのような状況になる可能性がある。
a,120ml
b,180ml
c,260ml
d,240ml←今回取られたもの

この場合、cからbにジュースを移すことで、bをもっとも多くしなければいけない。
その際にcをdより少なくしてはいけない。
そのようなことは不可能なので、途中で取れなくなる可能性はあるといえる

473 :□7×7=4□□:2008/07/11(金) 00:12:25 ID:BxzTna+Q
A1〜Anを人
B1〜Bnをコップ
 
----------
(1)A1は、もともとのジュースの入れ物から、
全てのコップ(B1〜Bn)にジュースを取り分けて入れる。
そして、全てのコップに『ジャストN分の1』の量が入っていると、
A1自身が納得いくまで、各コップのジュースの量を調整する。

(なお、当然のことだが、全てのコップに取り分けたのち、
 もともとのジュースの入れ物に、ジュースが残らないようにする)。

----------
(2)A2は、コップB1〜Bnのうち、
「A2から見て、いちばんジュースの量が多いと思えるコップ」を1つ取る。
(全てが等量に見えたら、どれをとっても可)。
そのコップを仮にBmとする。

----------
(3)A3は、コップBmに入っているジュースの量を見て…、

(a)「『ジャストN分の1』より多い」と判断したら、
 コップBmの量が『ジャストN分の1』となるよう、
 コップBmより、もともとのジュースの入れ物に必要な量を戻す

(b)「『ジャストN分の1』以下」と判断したらスルー

----------
(4)次いで、このコップBmについて、
A4、A5、A6、…、An-2、An-1までの各人が、
順次、上記(3)と同じことを行う。

----------
(5)Anは、An-1が判断した後の、
このコップBmに入っているジュースの量を見て…、

(a)「『ジャストN分の1』以上」と判断したら、コップBmを取る。
 
(b)「『N分の1』未満」と判断したら…、

上記の(3)〜(4)で、(a)の判断をした人
(「『ジャストN分の1』より多い」と判断して量を調整をした人)
のうち、最後の人(仮にAkとします)がこのコップBmを取ります。
(もし、A3以下の全員が(b)の判断なら、A2がコップBmを取ります)。
 
これで1人分が確定。

----------
(6)次いで、取り分の決定したAkを除き、残りのメンバーで、
上記(1)に戻って、同じプロセスを順次実行する。
これを、何度も繰り返せばOK。



474 :□7×7=4□□:2008/07/11(金) 05:23:41 ID:YVqVNtD1
4人
A1が4等分
A2がその中で最も多いものBmを選ぶ
A3がBmについて1/4より多いと思ったら1/4になるように捨てる
A4がBmについて1/4より多いと思ったらそのまま取り、少ないと思ったらA3に渡す


4人
A1が4等分
A2がその中で最も多いものBmを選ぶ
A3がBmについて1/4より少ないと思ったらそのままA4に渡す
A4がBmについて1/4より多いと思ったらそのままA4が取り、少ないと思ったらA2に渡す

大丈夫そうな希ガス

475 :□7×7=4□□:2008/07/11(金) 13:19:39 ID:JkZernPH
>>467のやり方でもどちらでも正解。
>>470の指摘は全く的外れ。

476 :□7×7=4□□:2008/07/11(金) 14:22:23 ID:sgSewgf4
>>474
A2が「Bm以外は1/4未満だ」と思っていたらA2は納得できなくなる。
A3が「渡されたものは1/4未満だ」と思ったらA3は納得できなくなる。

>>475
もっと具体的に

477 :□7×7=4□□:2008/07/11(金) 23:26:55 ID:/DA5tVz5
467=473です。

ちょっと補足。

●(補足1) 参加者の「納得」の定義

参加者は「自分の取り分が『ジャストn分の1』またはそれ以上である」
と思えたら「納得する」ものとします。

例えば、「こいつの取り分はオレより多い」と思った場合でも、
「でも、あいつとあいつはオレより少ない。
 まあ、オレの取り分はn分の1以上だから良しとしよう」
という具合に思って、納得してくれるものとします。

(なお、この「納得の定義」は、当初の出題者の意図から
 外れている可能性がありますので、そうであればゴメンナサイ)。

(書き込みを見ますと「自分の取り分がいちばん多いと感じる」
 ということを、「納得の定義」としている方もいらっしゃるようです。
 もし、それを定義とするならば、473は、回答としては不十分です)。


●(補足2)473を提示した理由(467の改良版として)

467のやり方ですと、
全員が自分の取り分を手に入れる前に、
もともとのジュースの入れ物がカラになる可能性があります。

「そんなん、もともとのジュースの入れ物の、
 残りの量をちゃんと見てりゃ、あるわけないじゃん」
とおっしゃられる方もいるでしょう。

それは確かにそうなのですが、
「参加者が、ジュースの量を見誤った場合に、
 そのようなことが起きるかも」
というのも、可能性として否定しきれない感じ…。

そこで、473の方法をご提示しました。

(467より、473の方が、だいぶ手間が増えるので、
 実際にやるとしたら大変ですが…)。



478 :□7×7=4□□:2008/07/12(土) 02:20:39 ID:kA5ZyedR
あのね、これは論理パズルだよ?純粋に理論上のお話なんだよ。
>>467>>17が間違いだと言いたいなら、その論理的欠陥を指摘しなければいけないよ。
『現実の世界で実際にやった場合に起こりそうなこと』を持ち出してきて否定しても、それが論理的欠陥に基づくものでないなら無効だよ。
論理パズルの世界では論理的整合性は必ず保たれる。
論理パズルの世界の人間は絶対に見誤ったりしない。
『見誤る』ってどういうことよ?
「これは1/nです」と「これは1/nではありません」という評価を同じものに対してするってことだよ?
あるいは「これは1/5未満です」と認めた量のジュースを3回ペットボトルから取り出した後に「残りのジュースは2/5以上ではありません」と主張するってことだよ?
論理的に全くおかしいのは明らかだよね?
だから論理パズルの世界では決してそんなことは起こらない。

479 :□7×7=4□□:2008/07/12(土) 18:25:52 ID:8mcveWCO
この問題には「登場人物はコップの比較が正しくできない」という前提がある。
ではなぜ比較が正しくできないのか?
ジュースをコップに移すと実際に入れた量より多く見えたり少なく見えたりするからだ。
もし、ジュースをコップに移しても量の補正は起こらないというなら「コップの比較が正しくできる」ということになってしまう。

100あるボトルから20取ったと思っていても
全てコップに移したら全体の合計が150(平均30)に見え自分のコップが最も少なく見えたり、
コップAは実量の2倍、コップBは実量の0.5倍に見えるコップで
AからBに移すと全体の量が減ったように見えるということもあり得るということだ。

480 :□7×7=4□□:2008/07/12(土) 22:23:29 ID:kA5ZyedR
>>479
ちょっと確認しておきたいんだけど...

「この問題の登場人物は論理的におかしな行動をとりうる。」という考えですか?
>>478で「論理パズルの世界では論理的整合性は保たれる。」
と書いたけど、そんなことはないという考えですか?

481 :□7×7=4□□:2008/07/12(土) 22:57:00 ID:h0qY5S4p
467=473=477です

再度補足です。


●「もともとの前提条件」について

もともとの前提条件が478の通りであれば、473は誤り。
(たとえば「実は478が出題者」という場合、473はバツである)。


●「より問題を面白くするための前提条件」について

もともとの前提条件はどうであれ、前提条件としては、
478より、以下の<前提条件A>の方が、問題としては面白い感じがします。

----------
<前提条件A>

自分の取り分が、実測量として、
全体のn分の1であるかどうかに関わらず、
全ての参加者が
「自分は『ジャストn分の1』または
 それ以上取っている(損をしていない)」
と思えるようにするには、どういう手順を踏めばよいか?
----------


●「派生問題」について

なんとなくですが、この前提条件をちょっといじくると、
面白そうな別問がいろいろ出来そうな気がします。例えば以下とか。

----------
<前提条件B>

自分の取り分が、実測量として、いかなる値であっても、
必ず、全ての参加者が
「自分は、他の誰よりも多い量を取っている(一番だ!)」
と思えるようにするには、どういう手順を踏めばよいか?
----------

(うーん、これはあまり面白くないか。
 「そんな手順は存在しない」で終わってしまいそう)。



482 :□7×7=4□□:2008/07/12(土) 23:40:36 ID:kA5ZyedR
>>478の前提だと>>473は間違いとか訳わからん。
今までずっと前提条件Aに基づいた話をしてきたつもりだけど、何だと思ってたの?
今まで前提条件A以外のどういう前提だと思ってたの?

483 :□7×7=4□□:2008/07/13(日) 09:35:03 ID:tNkwtNAZ
>>480 そういうことです。
「これは1/nだ」と一度認めたらその認識は何が何でも変えないというのはありえない。
今回はそれを証明します。

論理パズルの登場人物(以下被験者と呼ぶ)に1/nの分割を2回させ、2つのコップを写真に撮っておく。
被験者が見てないところでコップA0をA1に、B0をB1に移し
被験者にA1とB1に量の差があるか聞く。また違うコップに移して再度聞くということを何度か行う。

このとき被験者が毎回「同じだと思う」と答えるなら
ちゃんと量った量を様々なコップに入れた場合も「これらのコップには全て同じ量が入っている」と答えることになる。
それでは量の目測や比較は正確にできないという前提に反するからこのようなことは起こらないと言える。

被験者が「違う量だと思う」と答えたら被験者の目の前でコップA0、B0にジュースを戻し、
先ほど撮っておいた写真も見せ、ジュースを移していたこともあかす。
ここで被験者にA0とB0に量の差があるか聞いたらどうなるか?

「違う量だと思う」と答えた場合は最初にA0B0に分けたときの認識と違っていることになる。
「同じ量だと思う」と答えた場合は先ほどまでの認識と違っていることになる。

484 :□7×7=4□□:2008/07/13(日) 11:52:43 ID:YolyqGW2
483の主張は了解。

ただ、もし、483の主張内容を認めた場合でも、
「ある人の取り分がいったん決まったら、
 その人には、その後の分配プロセスは一切見せない。
 また、その後の、他人への分配量も一切見せない」
というやり方をとることにより、
その人の認識が変わることを防止できると考えますか?

「認識を変えるために必要な情報を一切出さないことにより、
 いったん取り分が決まった人が認識変更するのを防げる」
という考え方を、問題の前提条件に入れるのは妥当か?
ということです。

(あ、そーそー。
 私は481であって、480ではありません。
 会話にヨコから入ってゴメンですが、
 良かったら483さんの考えを教えて下さい)。


485 :□7×7=4□□:2008/07/13(日) 13:06:22 ID:tNkwtNAZ
>>484
最初に取る人だけは分配完了後も納得していられるでしょう。
ですが、2番目以降の人は前の人が取った量を覚えており「自分が取った量は前の人より少ない」と思う可能性があります。
ですから前提条件に入れる意味はないと思います。

コップに1/n取る ではなく ボトルから1/n捨てる なら全員が納得できると思います。

486 :480:2008/07/13(日) 20:15:42 ID:XS+0Saa2
>>483
......だったら何故、『論理パズル』のスレに書き込んでるの?『非論理パズル』じゃないんだよ?
サッカーのスレでハンドボールについて書き込んでるようなもんですよ。
『論理的整合性は必ず保たれるという前提なら>>17は正解』というのはOKなわけね?
それならもう何も言うことはありません。

「量の目測や比較は正確にできない」という前提なんてどこにあるのかよく分からないけど、まあ頑張って下さい。


487 :□7×7=4□□:2008/07/13(日) 21:30:24 ID:W7+o2j/3
484です

>>485

ある人が「自分が取った量は前の人より少ない」と判断した場合、
その後、その人への情報流入を遮断すれば、その判断は変更されない、
と思ってよいのでしょうか?

(あえて、ヘンな突っ込みをしています。
 要は「情報遮断が判断変更の防止に有効か」を
 確認したいと考えています。
 その人が損得どちらの判断をしたかにかかわらず、ね)。



488 :□7×7=4□□:2008/07/13(日) 23:44:10 ID:tNkwtNAZ
>>486 前提なんてどこにあるのか
量の目測や比較が正確にできるのなら分け方を考える必要がなくなりこれが問題として成立しなくなります。
また、問題文の「感覚でしか分けることができません」という部分を量の目測や比較が正確にできないという意味に受け取ることができます。

>>487 情報遮断が判断変更の防止に有効か
有効だと思います。

489 :□7×7=4□□:2008/07/15(火) 01:30:07 ID:eFwfbwRN
>>488
確かに「感覚でしか分けることができない」と書いてるけど、「全く正確な感覚の人」がいるかもしれませんよ?
「全員が正確な感覚」と「全員が不正確な感覚」の2通りしかないわけではないよ。

490 :□7×7=4□□:2008/07/15(火) 23:10:48 ID:3Aoz8DYv
まず一人が全て同量だと思えるようにジュースを分ける。
残ったメンバーは1/n以上だと思うコップ(欲しいコップ)を全て選択する。

ここで選択する方のメンバーが
1「aが欲しい」 2「bが欲しい」 3「cが欲しい」 みたいに全員がジュースを取れる選択をした場合は
それぞれ欲しいコップを受け取り、分けた人物は誰も選択してないコップ(今回はd)を受け取る。
1「abが欲しい」 2「abが欲しい」 3「acが欲しい」 という場合は
1、2はabをランダムで 3はcを 分けた人はdを取るといった具合になる。

3人「aが欲しい」 みたいに全員がジュースを取れない選択をした場合は今回3人はジュースをもらえず
分けた人がa以外のコップを取る。

コップを取ったメンバーを除きまた最初から


ジュースを移し替えるとコップ全体の量が変わって見える補正(実量のx倍に見える補正)は起こらず
ジュースを移し替えてもコップ全体の量が変わって見えない補正(実量+xに見える補正)のみ起こる
という条件下なら分配後も不満が出ずに必ず成功すると思うのですがどうでしょう。

491 :□7×7=4□□:2008/07/20(日) 12:34:18 ID:I7oim/49
ふぬ

492 :□7×7=4□□:2008/07/20(日) 14:17:10 ID:So5qVIQU
コップAは実量の2倍、コップBは実量の0.5倍に見えるコップで、AからBに移すということを被験者にやらせた場合
被験者はジュースの量が減ったとは考えず、コップによって見え方が違うと考えるはずだ。

一人の被験者にコップAに1/nだと思う量を注ぎコップAから別のコップに移す。ということをn回やらせた場合
被験者は各コップに入っている量は"違って見える"と言うだろう。
だが、実際に入っている量は"同じだと思う"とも言うはずだ。

つまり、
コップAに1/nと思う量を取り、コップAのジュースを別のコップに移す。
という手順を加えれば>>17が正解になるのではないだろうか。

493 :□7×7=4□□:2008/07/20(日) 21:38:13 ID:2NXk+LHq
非論理パズル派のトンデモ話は本当に面白いなw

494 :□7×7=4□□:2008/07/21(月) 10:15:43 ID:Ay/S/JVW
>>493
論理的整合性は必ず保たれる が口癖の人ですか?
もしそうならあなたに質問があります。

被験者が見てないところで同量のジュースを形の違ういろんなコップに入れ特に何も教えずに被験者にコップを見せたとき
被験者は どの量も同じように見える と答えるか 量が違うように見える と答えるか?
どの量も同じように見えると答えるなら被験者は量の目測や比較が正確にできるということになり>>2が問題として成立しなくなります。
量が違うように見えると答えるなら論理的整合性は必ずしも保たれないことになります。

あなたは、どっちだと思いますか?

495 :□7×7=4□□:2008/07/21(月) 20:15:29 ID:Qu1OAxGC
>>494
そんなの俺に聞かれても分からないよ。

全部同じと答えるかもしれないし、全部バラバラと答えるかもしれない。
これとこれとこれが同じであとはバラバラと答えるかもしれない。
他の奴に聞けば違う答えが返ってくるかもしれない。
聞かれた奴の感覚次第だよ。

そしてどう答えようと何も問題はない。
全部バラバラと答えたら論理的整合性が保たれないなんてこともない。

496 :□7×7=4□□:2008/07/21(月) 22:59:49 ID:Ay/S/JVW
各コップに入っているジュースの量は違うと答えた後、
コップAに入っているジュースの水面に線を引き、コップAのジュースを捨てます。
そして他のコップからコップAにジュースを移し、線の位置を確認したら
コップAのジュースを捨てまた別のコップから移すということを行います。
どのコップのジュースを移しても線の位置までジュースが入るはずです。

これでもまだ被験者は各コップに入っていたジュースの量は違うと言うでしょうか?

「各コップに入っていたジュースの量はバラバラだ。線の位置?なにそれ。」というのであれば
論理的整合性は崩壊しています。

「違うと思っていたけど間違いだった」というのであれば
「1/n取ったと思っていたけど間違いだった」という可能性も出てきます。

1/n取ったという感想を後になって変更するのは論理的整合性が保たれない行為なのではないでしょうか?

497 :□7×7=4□□:2008/07/22(火) 01:04:25 ID:jTFADNg6
たとえコップに書いた線ぴったりにジュースが入っても、その人にはそう見えないんじゃないですかね?
「ほらね?線よりずっと上まで入ったでしょ?私の言った通り量が違うでしょ?」ってな具合に。

まあこれは半分冗談だけど、要するにあなたが言いたいのは

『これが1/nです』と言った人に『1/nではない』という測定結果のような絶対的な証拠を突きつければ、その人も自分の間違いを認めざるを得ないんじゃないか?
そうすると同じものを1/nと言ったり1/nではないと言ったりすることになって、論理的整合性は保たれないんじゃないか?

ということでOK?

498 :□7×7=4□□:2008/07/22(火) 18:41:42 ID:dtq3X4MG
>>497
そういうことです。

499 :□7×7=4□□:2008/07/23(水) 04:20:51 ID:HyOmZl3C
あのね、この問題でジュースの量に関しては登場人物それぞれの主観のみで成り立ってるの。
客観的に絶対正しいことなんて存在しないの。

「これは全体の1/nだ」とか「このコップのジュースが一番多い」とかいう各人の主観がある。
そして、それが本当に正しいのか、あるいは間違ってるのかは誰にも分からない。それがこの問題の前提だよ。

「計量カップで量ればハッキリするじゃん!」
「コップのジュースの上面の位置に印付けといて、空にしたあと次のコップのジュースを移して...」

現実の世界ではね。この問題は現実の世界の話ではないからね。

だいたいそういうことを許せば、それこそ問題として成立しないと思わないか?
各人が納得するどんな分け方しようと、計量カップ君が乱入してきたら終わりだよ?

500 :□7×7=4□□:2008/07/23(水) 12:18:44 ID:Y9a0QFz1
>それが本当に正しいのか、あるいは間違ってるのかは誰にも分からない。それがこの問題の前提だよ。

つまり、登場人物は「1/n取った」という感想に絶対的な自信を持てないということですよね。
では>>17の分配をし、終了後にコップを見比べたら
「1/n取ったはず」だから「自分は他の誰よりも少ないように見えるのは気のせい」と考える場合と
「自分は他の誰よりも少ないように見える」だから「1/n取ったのは気のせい」と考える場合があるんじゃないですか?

501 :□7×7=4□□:2008/07/23(水) 13:47:09 ID:HyOmZl3C
全然違う。各人は自分の主観には絶対の自信を持ってるよ。
分配終了後に自分のが一番少なく見える(1/n未満に見える)ことはない。

502 :□7×7=4□□:2008/07/23(水) 18:08:51 ID:Y9a0QFz1
「1/n取った」という主観と「自分は他の誰よりも少ないように見える」という主観
どちらも主観なのに「1/n取った」という主観しか信じないのはなぜですか?

503 :□7×7=4□□:2008/07/23(水) 18:57:56 ID:Y9a0QFz1
ついでにもう一つ言っておきます。
その人が何を信じていようが見える物が変わってくるということはありえません。

例えば地球は真っ平らだと信じてる人を地球一周させた後、住んでた村に返します。
そこには当然彼の知ってる人達がいます。これらの人達を見て彼は
地球をずっと進んでいくとそっくりさんの村があるんだなぁ。記憶まで同じとはたまげたなぁ。 と思う可能性もありますし
地球は平らだと思ってたけど輪っかか玉みたいな形だったんだなぁ。 と思う可能性もあります。
彼が村人を本物と思うかそっくりさんだと思うかは定かではありませんが
見た目がそっくりな村人を目撃する ということは絶対的な事実です。

1/n取ったと思っていた人が
自分は誰かよりも多いと"思う"事はありえますが
自分は誰かよりも多いように"見える"事はありえません。

504 :□7×7=4□□:2008/07/24(木) 03:42:49 ID:jxGH7BEX
>>502
主観に理由なんてない。

>>503
1つのコップに入ったジュースを見て、1/nだと思う人がいる。
1/nより多いと思う人もいるし、少ないと思う人もいる。
見てるものはみんな同じ。でも人によって見え方が違う。
それが主観というものだよ。


505 :□7×7=4□□:2008/07/24(木) 12:48:27 ID:+anN71+h
上の方にも書いてありますがボトルからコップにジュースを移すとその量は変化して見えます。
自分21、ボトル79 と"思って"いたのならば
分配完了後は自分21、他全員の合計79と"思って"いるでしょう。
でもコップを見ると、自分21、他全員の合計120 のように"見える"場合があるのです。

このように見えたとしてもまだ論理的整合性は保てます。
「自分のコップが誰よりも少なく見えるが、補正のせいでそう見えているだけ。実量では自分のが誰かより多いはず」
と考えればいいのです。
ですが、
「自分が1/n取れている保証はどこにもないし、自分のが少なく見えるのは事実。1/n取れてないかもしれないなぁ」
と考える可能性もあります。

登場人物が「1/n取った」という主観を他のどんな主観より優先的に信じる ということを証明できなければ
>>17を正解とは認められません。

506 :□7×7=4□□:2008/07/24(木) 14:36:27 ID:jxGH7BEX
「ボトルからコップにジュースを移すと量が変化して見えます。」

何やら断言してますけど、これはどこから来たの?
あなたの実体験?


507 :□7×7=4□□:2008/07/24(木) 18:36:21 ID:+anN71+h
>>479に書いてあります。

508 :□7×7=4□□:2008/07/25(金) 03:42:48 ID:e6yzfKXE
どうもおかしいと思ったら、肝心なことをすっかり忘れてました。

あなたは非論理パズルをやってるんだったね。
「論理パズルの世界では論理的整合性は必ず保たれる」という前提ではないんだったね。

もし、「論理的整合性は必ず保たれる」という前提で考える気になったらまたお話しましょう。

509 :□7×7=4□□:2008/07/25(金) 06:47:10 ID:LR/IyE6K
なんていうか、ジュースっていう均質なものを題材にしてるのが根本的な間違いな気がする。

ジュースって厳密に図ればAとBのどちらが多いかが客観的に決まってしまう。
これって分配問題にとっては致命的な欠点だと思う。

これが例えばケーキの場合だと、Aの方が少ないけど、Bにはいちごが載っていないなど、
客観的に優劣が決められない場合が出てくる。

後者の方がこういう問題には適していると思うのだが。

510 :□7×7=4□□:2008/07/25(金) 09:38:53 ID:1NiqJd5D
論理的整合性は必ず保たれる の人は
主観で決めたことを信じ続けるのが論理的なのか否かとか
なぜ、1/n取ったという主観を必ず信じるのかとか何一つ証明できてないよね。
仮にそれを証明できたとしても>>17を現実世界で利用できないのは明白。
俺の答えは×じゃない。△なんだ!って言ってるようなもん。
そんなに△だと思いたいなら勝手にそう思ってなさいな。
俺は現実世界でも利用できる、○がもらえる分配方法を書きますよ。

511 :□7×7=4□□:2008/07/25(金) 09:40:00 ID:1NiqJd5D
コップAにだいたい1/nじゃないかなーという量を注ぎます。1/nに絶対的な自信を持つ必要はありません。
注いだら水面の位置に線を引きます。マジックが用意できないなら指で輪っかを作るとかで線の代わりにしましょう。
コップAのジュースを空いてるコップに移す→コップAの線の位置までボトルからジュースを注ぐ ということを繰り返します。
おそらくジュースが余るか不足するでしょう。そうなった場合ジュースを全てボトルに戻します。
不足だったら線の位置を下げ、余ったなら線の位置を上げまた最初からやりなおします。
いずれ余りも不足もなく分配が完了するはずです。
分配が完了したとき各コップに入ってるジュースの量が違って"見える"こともあるでしょう。
ですが、各コップには同量のジュースが入っていと登場人物達は"思って"ます。
しかもその思いに絶対的な自信を持っているはずです。
全員同じ量を取ったと登場人物達が"思った"ので分配成立です。

要するに計量カップがないなら作っちゃえばいいって事です。
主観で1/n取ったと決めること自体間違いって事です。

512 :□7×7=4□□:2008/07/25(金) 14:37:22 ID:e6yzfKXE
こんにちは。論理的整合性は必ず保たれる の人です。

>>510
一つの物に対して「これは1/nである」と「これは1/nではない」という2つの評価をすることは論理的に矛盾している。
だから『論理的整合性は必ず保たれる』という前提のもとではこういうことは起こらない。 証明終わり

いつかちゃんと理解出来て、>>511を読み返して
「俺はなんてトンチンカンなことを言ってたんだろう...。」
と恥ずかしく思う日が来ることを祈ってます。


ま、そんな日は来そうもないけどw

513 :□7×7=4□□:2008/07/25(金) 16:34:59 ID:1NiqJd5D
>>17は現実世界で使えないという時点で論理的整合性が成立してないという考え方は出来ないんでしょうか。
できないんでしょうねぇ。

正確な測りで「1/nである」と確認したのならその後どんな物を見ても「これは1/nではない」なんて言わないでしょう。
それは論理的整合性の範囲です。
ですが、主観で「1/nなんじゃないかなー」と決めた場合、(現実世界の人間は)その主観に絶対的な自信は持てません。
「1/nなんじゃないかなー」という主観は論理的整合性の範囲外なんですよ。(少なくとも現実世界では)

なのに論理世界の人間だったら自分の主観を絶対的に信じる とあなたはいう。
なぜ論理世界の人間だったら自分の主観を絶対的に信じる と言えるんですか?
その証明はできますか?

514 :□7×7=4□□:2008/07/25(金) 22:15:21 ID:9XT/YrqU
証明云々じゃなくてそれは設定だろ

515 :□7×7=4□□:2008/07/26(土) 03:41:50 ID:RGhSZ9nZ
こんばんは。論理的整合性は必ず保たれる の人です。

>>513
ちょっと長いですが思うことを書きます。

>>17が正しいということは、俺ですら理解できるぐらいなもんで、とても簡単でシンプルな話なんだよ?
あなたは頭が良すぎるのか、ややこしく、複雑に、難しく考えすぎてるように思う。
そしてその一番の原因は『現実の世界と論理の世界の頭の切り替えが出来ていない』ことだと思う。
この問題には『コップ』とか『ジュース』とか『人間』とかいった、現実の世界に存在するものが出てくる。
でもそれはあくまで論理の世界のことを現実の世界の物事に置き換えて、例えて話をしているということ。
それなのにそういう物事、特に『人間』の現実世界ならではの特質を持ち出してきて>>17を否定するというのは全く本末転倒なんだよ。

この問題に出てくる『人間』は現実世界の人間ではない。

もともと論理の世界の話であることを考えれば、この『人間』がどういう設定なのかは分かるはずだよ。
この『人間』はコップに入ったジュースを見て、1/nかどうかを確信を持って答えられる。
そして「これが1/nだ」と答えたなら、それがそいつにとっての1/nであることが確定する。

516 :□7×7=4□□:2008/07/26(土) 12:27:01 ID:oa1k370F
論理世界の人1人に>>17の分配を1人分させます。
1/n入ったコップを取ったとその人は思いました。
「では、このコップをコップAとします。
毎回コップAに今と同量のジュースを取っていっても分配が成功するはずですよね。それを確認してください。」
といいます。

さて、仮にコップAが2個あってそれぞれに入っている量が違ったら
その量を「同じだ」というのは論理的に矛盾しますね。
なので、論理世界の人はコップに線を引かずとも毎回同じ量のジュースをコップAに取るはずです。

コップAにジュースを取る作業を進めます。
彼はコップAに1/n入っていると思い込んでいますが、残念ながら実量は1/nではありませんでした。
結果、分配は失敗してしまいました。

彼はこの事態をどう解釈するでしょう。

517 :□7×7=4□□:2008/07/26(土) 13:30:14 ID:kGsbPIMi
(おおお、いつの間にか盛り上がっている。
 ちょっと嬉しい…、 が………。
 …まぁ、複雑な思いは置いといて1コだけ)。

>>17の支持者の方に質問。

ある参加者が「これが1/nだ」と思った量が
「実際の1/n」より多い」という場合があるとします。…@

そういう参加者が少なければよいのですが、
そういう参加者が多い場合、
または、全員がそういう方の場合。…A

>>17の方法で取り分けをすると、全員に行きわたる前に
ジュースがカラッポになります。 … B

この考え方は間違っていますでしょうか?
間違っているとすると、どこが間違いなのでしょうか?
(@〜Bのうち、どれが間違いなのでしょうか?
 それとも@〜B以前に何かがまちがっているのでしょうか?
 それともBという結果でもOKということでしょうか?)

私個人としては、この問題を回避出来るのであれば、
>>17の方法でOKです。
(というか、シンプルで良い方法だと思います)。


518 :□7×7=4□□:2008/07/27(日) 00:34:05 ID:cJRhwv3k
俺には>>509が真理に思えてきた

519 :□7×7=4□□:2008/07/27(日) 02:10:00 ID:S/FjMNH2
>>516
まったく同じコップが2つあって、それぞれに入っているジュースの量が異なるとき
その量を「同じだ」と言うのは論理的に全く矛盾しません。
ついでに言っておくと、その2つのコップに入っているジュースの量が同じとき
その量を「同じではない」と言うのも論理的に全く矛盾しません。

一体なぜ論理的に矛盾すると思うわけ?

>>517
@で言ってるのは『これが1/nだ』と思う量が必ず実際の1/nより多い人のこと?

それだったら、そういう人の存在を想定したことが間違い。
そんな人は論理的に存在し得ないから。

1/2の感覚が実際の1/2より大きい奴にペットボトルから1/2だと思うジュースを取らせるとする。
当然、こいつは実際の1/2より多いジュースを取り、ペットボトルには1/2より少ないジュースが残る。
この1/2より少ないジュースもこいつにとっては1/2でなければならず、これはこいつの感覚の前提に矛盾する。
だから1/2の感覚が実際の1/2より大きい奴というのは存在し得ない。

n=2以外の場合も理屈は同じだよ。


520 :□7×7=4□□:2008/07/27(日) 08:36:47 ID:94qyqw61
>1/2の感覚が実際の1/2より大きい奴というのは存在し得ない
じゃあ1/2より少ない量を取った場合もボトルに1/2より多く残っていると判断するんじゃないですか?
それでは 登場人物は目測が正確にできる と言うことになってしまいます。
大きな計量カップに入ったジュースがあります。このジュースをn人で同量に分ける方法を考えてください って言ってるようなもんですよ。

で、登場人物は目測が正確にできるみたいなことを言っておきながら
>同じコップの比較を間違うことは論理的に全く矛盾しません
もう、わけわかんないんですけど。
正確な目測ができる人がどうやって比較を間違えるんですか。
もうあなたの考える論理世界の人間というものが理解できません。

521 :□7×7=4□□:2008/07/27(日) 09:23:07 ID:02J49cgU
>だから1/2の感覚が実際の1/2より大きい奴というのは存在し得ない。
                      ↑
                     「常に」
という意味だろう

522 :□7×7=4□□:2008/07/27(日) 21:34:08 ID:a/cvO2kc
>>519
「@のような参加者は存在しないのが前提である」
と、519さんが考えているとのこと、了解しました。

(それが前提だと、問題がエラク簡単になるような気が…。
 まぁ、いいか、前提は前提だし)。

ほいじゃね。

523 :□7×7=4□□:2008/07/27(日) 22:59:41 ID:S/FjMNH2
>>520
>>521さんが言ってくれてるように「1/nの感覚が『常に』実際の1/nより大きい人は存在しない」という意味だよ?
「実際の1/nより大きい量のジュースを1/nだと認める人は存在しない」という意味ではないよ?
そんなの>>519読めば明らかだと思うんだけど.....。
なので「目測が正確に出来る」なんてことにはなりません。
>>522
「1/nの感覚が常に実際の1/nより大きい人は存在しない」というのは前提ではないよ。
「論理的整合性は必ず保たれる」という前提から導き出される結論だ。

>>519の説明が理解出来なかったの?


524 :□7×7=4□□:2008/07/27(日) 23:46:28 ID:94qyqw61
>「1/nの感覚が『常に』実際の1/nより大きい人は存在しない」という意味だよ
そういうことでしたらこちらの早とちりです。すみません。


では、>>519の 一体なぜ論理的に矛盾すると思うわけ? への回答です。

論理世界の人がジュースを取り終わる度にコップの写真を撮ります。
もし、前回と違う量を取ったのに「これは全回と同じ1/n」と言った場合、
(写真を見せ)あなたはさっきこの量を「1/nだ」と言っていた。なのに今は違う量に対して「1/nだ」と言っている。
あなたにとっての「1/n」って一体どの量のことなんですか?という質問をしなければならなくなります。
(もしこういう事態がありえるとお考えならば、このとき論理世界の人がなんと答えるか教えてください)

論理世界の人は同一の存在(コップ)に対して
「1/nだ」と「1/nじゃない」という二つの評価をしないのですから
同一でない存在に対して「同じだ」という評価もしないはずなんですよ。
だから論理世界の人は(例え目測が正確にできなくとも)同じコップを用いた場合に限っては毎回同じ量を取れるはずなんです。

525 :□7×7=4□□:2008/07/28(月) 22:52:53 ID:GhwP+Lcc
>>524
違う.....そうじゃないんだよ。

論理世界の人の目の前にジュースが入ったコップがある。
そいつがそれを「これは1/nです」と認めたとする。

このとき、こいつにとって1/nなのは「今、目の前にあるコップに入ってるそのジュース」だよ。
コップを空にして同じ量のジュースを入れても、そいつがそれを1/nだと思うかどうかは分からない。
同じものに対して「これは1/nです」と「これは1/nではありません」という評価をするのは論理的におかしい。それはその通り。
だけど「同じコップに同じ量のジュースが入ってればそれは同じもの」ではないんだ。

526 :□7×7=4□□:2008/07/28(月) 23:12:31 ID:GhwP+Lcc
訂正

「同じもの」という表現がまぎらわしかったな。

一つのものに対して「1/nだ」と「1/nではない」という評価をするのは論理的におかしい。

に訂正させて下さい。

527 :□7×7=4□□:2008/07/29(火) 02:19:22 ID:azeEFl/B
ようやく追いついた
>>225とか>>481に書かれていることが理解できた
3つの時の解はもう出てるかも知れませんがチャレンジしてみます

4つは・・・場合分けがダルそう

vipから来ますた(

528 :□7×7=4□□:2008/07/29(火) 12:13:08 ID:G3iZC/Le
>>525
では、コップに線を引いて>>516をやらせた場合はどうなりますか?

絶対的な証拠で主観を否定させるのは反則とか言うのは無しですよ。
登場人物には記憶するという能力があるんです。(でないと「1/n取った」ということも覚えていられません)
線を引くのは「記憶を確実なものにする補助手段」と考えてください。

529 :□7×7=4□□:2008/07/29(火) 17:17:56 ID:8iCj/VYs
そいつが入れたジュースが線の上でも下でも、そいつには線ピッタリに見えるでしょうね。
というわけで特に問題ないので心配しなくても大丈夫ですよ。

530 :□7×7=4□□:2008/07/29(火) 18:08:17 ID:azeEFl/B
どこまで本質に迫れているか分かりませんが

>>528
たとえば1000ccを5人で>>17の方法(バナッハ=クナスター解ですか)で同じコップに分けるとする
このとき全員が250ccを1/5と思って、そこでストップをすると最後の一人が0cc。
これでも最後の一人が納得するかと言う問題でしょうか。

この場合最後の一人の思考が矛盾しています(まだ4/5しか注がれていないのに1/5残っていない)
このような矛盾した思考をするパンピーは論理クイズに登場してはいけない暗黙のルールがあるらしいので(詳しくは知らないけど)
このような例は考えなくてよいのだと思います

531 :□7×7=4□□:2008/07/29(火) 18:24:49 ID:azeEFl/B
考えなくてよいで終わるのもあれなんで>>530に補足

他の人がしきりに全体1/5でなく残りの1/(5-N)で考えろと言っているのは以下のような理由からです
・はじめに全員目分量でストップを言うタイミングを決めます
・いざストップを言おうとしたところ、先にストップを言うチキンが登場
・すると他の人は自分の取り分が増えることになります(残りは4/5以上あるのですから)
で、残りの1/4注がれたと思ったところでストップを言います。
結果として先にストップを言ってジュースを確保した人より少なくなることが(現実には)起こり得ますが
彼らは論理クイズの人間なので実際の量など目もくれず満足するのです。

多分

誰か補足訂正を・・・俺は無羨望なんとかに挑戦したいんだ・・・

532 :□7×7=4□□:2008/07/29(火) 19:07:12 ID:G3iZC/Le
>ジュースが線の上でも下でも、そいつには線ピッタリに見える
それって物理的な情報を完全に無視してるじゃないですか。
それじゃあ論理世界の人は計量カップで分配しても納得しないって事になりますし
現実世界で使える分配方法も使えなくなるということになります。


ジュースの入ったペットボトルと形が同じコップが3つあります
3人でこのジュースを「全員が納得いくように」分けたいのですが
どのような手順をとればよいでしょうか(注意:これは論理パズルです)
という問題があった場合
「各コップの水面を同じ高さにすればいい」は不正解で
>>17のように取ればいい」が正解になるんですか?

533 :□7×7=4□□:2008/07/29(火) 19:44:04 ID:azeEFl/B
>>532
比較できる場合、参加者は自分の直感が誤りであったことに気付くわけで、そういう場合は>>17の方法で分けてもうまくいかないと思います。
しかしこの問題は比較ができないので、>>17の方法がうまくいくのではないでしょうか。
と思ったが分け終わってから空のボトル使えば比較できるのね。
さあ混乱してまいりました。論理的には比較するまでもなく自分は1/5あると皆思い込んでいるはずですが・・・

ちなみに>>532の問題の場合
「各コップの水面を同じ高さにす」るやり方で全員納得すればそれも正解
だれかが「これはよく見ると同じ高さではない」と言いだす場合不正解の可能性もある。
>>17の方法は正解
といったところでしょうか

ところで無羨望なんとかヤバい。
自分以外が分ける→自分以外が取る
の流れがあるともう納得いかなそう。

534 :□7×7=4□□:2008/07/29(火) 21:08:48 ID:8iCj/VYs
物理的な情報を無視してるわけじゃなくて間違えてるだけ。
現実世界で使える分配方法は論理世界で使えないといけないの?なんで?
『.....正解になるんですか?』については「はい、その通り。」

どうしても『同じコップなら量の比較は正確に出来る』と思いたいのね?

論理世界の1人にペットボトルからコップに1/2だと思うジュースを入れさせるとする。
こいつは実際には1/2ではない量のジュースをコップに入れて「これが1/2です」と言った。別に問題ないよね?
このコップのジュースはこいつにとって1/2であることが確定し、同時にペットボトルに残ったジュースもこいつにとっての1/2であることが確定する。そうですよね?
全く同じコップをもう一つ持ってきて、ペットボトルに残っているジュースを入れる。

この2つのコップに入っているジュースの量は異なるが、こいつにとっては同じだということになる。

これはどう説明するの?

535 :□7×7=4□□:2008/07/30(水) 13:41:00 ID:UEh5AxjZ
>>534
あなたはどうも前提があるから状況がありえないと考えているようですね。
前提とはあらゆる状況に対応できるからこそ前提になりえるのです。
状況が前提についていくのではありません。

複数人のどんな願いでも叶えてくれる魔人がいるらしいという噂が流れていました(仮前提)
でもA校とB校が「今年の甲子園で優勝させてくれ」とお願いしたらそれは叶えられません(状況)
だから「複数人のどんな願いでも叶えられる」ということはありえないという結論になりました。

「論理世界の人間は1/nの主観を変えない」という仮前提は
1/nだと思う量を1回取り、2回目以降は線を引いたコップで同じ量を取る
という状況に対応できません。
だから、「論理世界の人間は1/nの主観を変えない」という前提は無効なんです。

そもそも論理世界なんて無いんですよ。

536 :□7×7=4□□:2008/07/30(水) 22:57:59 ID:kHlC6bEv
>>535

まず「論理世界」というのがあって、そこに「論理的整合性は必ず保たれる」という前提があるのではない。
まず「論理的整合性は必ず保たれる」という前提があって、そのもとで造られたのが「論理世界」だよ。
魔人の話は全く例えになってないのがわかるだろうか?

537 :□7×7=4□□:2008/07/31(木) 10:08:40 ID:WzPlw4Np
じゃあ「主観は論理的整合性の範囲に入る」という前提が不成立だと言うまでですよ。
>>515では"思うこと"を述べていただけで"証明"はできなかったでしょ。
主観は論理的整合性の範囲に入りません。主観より絶対的証拠が勝るのはあきらかですから。


>>17は2番目以降の人達が最初に取られた量を1/n未満だと思っています。
だから、その量より多く取りたいと考えるはずです。
最初の人が取った水面の位置に線を引けば確実に多い量を取れます。
でも、最初の人が取った実量が1/n以上だったら分配は失敗します。
失敗する可能性がある>>17は不正解と言えます。

538 :□7×7=4□□:2008/07/31(木) 12:21:18 ID:Yy8Bo1bC
実は>>509が本質なのではないだろうか。
このジュースは底の方ほど濃くなっていて、単純に量で分けたら納得がいかないんだ。

と話についていけなくなりつつある俺が横レス

539 :□7×7=4□□:2008/07/31(木) 21:57:40 ID:LWPFWO/F
>>537
証明は出来なかったとか何言ってるのか....。
あのね、この問題には主観しかないんだよ?確実に実際に多い量を取ることは出来ないの。
あくまでも主観で、感覚で多いと思う量を取るしかないわけ。
そしてその感覚が正しいのか間違えてるのかは分からない。そういう問題だよ?
それなのにコップに線引いてどうのこうのとバカなこと言って、実際に多い量を取れることにしてる。
それでは「各人の感覚ではなく実際に1/nのジュースをもらう」という答え以外は正解にならないけど、それでいいのね?

2人で分けるときの例として

「1人が2等分だと思うように分けて、もう1人が多いと思うほうを取る。残ったのを分けた人が取る。」

というのを出題者が書いてるけど、これも不正解ということでOK?

540 :□7×7=4□□:2008/08/01(金) 09:52:04 ID:r67kLbtl
>この問題には主観しかない
もし、主観しかない世界があるのなら>>17は正解になるでしょう。それは認めます。
でも主観しかない世界なんて物理的に存在しません。
透明な容器と線を作り出せるもの(マジックや人間の手)さえあれば絶対的な量の比較はできてしまうんです。
物理的に存在しない世界での解決方法を語るのって
「魔法の国ならその問題解決できるよ」って言ってるのと同じ気がするんですが。

あと、「1人が2等分だと思うように分けて、もう1人が多いと思うほうを取る。残ったのを分けた人が取る。」ですけど
>>511の方法で2等分すれば現実世界でも正解になりますよ。

541 :□7×7=4□□:2008/08/01(金) 15:01:30 ID:g4zjD3ce
マジックなんて問題中に出てこないものを使うのは論外
物理がどうだの言うならば人間の手など全く滑らないはずがないし
仮に滑らなくともその方法では無限に試行することになる

「感覚でしか分けることができない」と問題中で明言されてて
「納得」という主観を満足させることが最終目的
ただし何度も言われてるようにこの定義は少々曖昧な部分がある
「自分の感覚で1/n以上取れば納得」という解釈での答えが>>17

542 :□7×7=4□□:2008/08/01(金) 16:16:58 ID:O0iTDa3B
量が比べられないコップ考えた
目盛りのない細い試験管をたくさん束ねたようなやつ
これだとジュースを注ぐたびにコップのどの試験管の部分にジュースがたまるかが変わって高さで量が見られなくなる
したがってジュースの量を量って入れることも不可能

だからどうというわけでもないですが

543 :□7×7=4□□:2008/08/01(金) 20:54:36 ID:r67kLbtl
>物理がどうだの言うならば
論理世界の人間は物理的にありえる…という反論には見えませんが
一応、物理的にありえないという例をもう一つ書いておきます。

1000mlのジュースと容量101mlのコップ1個を用意し、1人に1/10だと思う量を10回取らせる。(10回目もコップに取らせる)
1回目にコップに入りきる量を取り、その後もコップに入りきる量を取っていった。
9回取った時点でコップに入りきらないジュースがボトルに残っている。
当然10回目のジュースを取ろうとするとコップからこぼれてしまう。
ここで「あなた今までコップに入りきる量を1/10だと思っていたはずですよね。なのに今はコップからこぼしましたよね。
コップからこぼれるほどの量が今までと同じ1/10なんですか?」と聞きます。
この質問に「はい」と答えるのが論理世界の人間です。
物理的にありえないでしょ。

544 :542:2008/08/01(金) 21:26:37 ID:O0iTDa3B
思うに量の比較ができるのなら論理世界とか物理世界とか関係なくその人たちはうまくやると思うんです。
だからどうか>>542のコップとボトルを想定してください。
折角面白い問題があるんだから取りかからなきゃもったいないじゃないですか。

今までの議論はよく理解できていないけど、量が客観的に比べられることが問題なんでしょ?

545 :542:2008/08/01(金) 22:11:58 ID:O0iTDa3B
ようやく問題点が見えてきた気がする
量の比較ができないと1/n取り分けてもそれが1/nだと思えないわけですね。
やっぱり問題の本質を>>509だと思って考えた方がよさそう
ジュースで問題ならケーキだと思えばいいのではないでしょうか

>>542>>544では失礼しました

546 :□7×7=4□□:2008/08/01(金) 23:06:59 ID:BjNYBMmG
>>540
こんばんは、論理的整合性は必ず保たれる の人です。

感覚しかないなら>>17は正解だと認めるならOKです。

この問題を読んで「ペットボトルのジュースをn等分せよ」という意味だと思うのはハッキリ言って読解力、というかセンスがないな。
論理世界が物理的に存在するわけないし、存在する必要もないんだよ。
どうしても現実世界のこととして考えないと気持ち悪いみたいだけど、もっと想像力働かせて頑張って下さい。

それから>>541は俺ではないからね。じゃあね。

547 :□7×7=4□□:2008/08/02(土) 01:29:59 ID:Vwtfaupc
6人の海賊ABCDEFが100枚の金貨を分けます。
頭が金貨の分け方を提案し,全員で投票を行います。
頭以外の少なくとも半分の海賊がその提案に賛成すれば,その分け方が実行されます。
賛成が半分に満たなければ、分け方の提案をした頭を殺し,やりなおしです。
頭はアルファベット順で決定されるので揉めることはなく、一つの案が認められるまでこの手順を続けます。
海賊はみなきわめて論理的かつどん欲で,死にたくはありません。
最終的にどのような配分で決定されたでしょうか?

548 :□7×7=4□□:2008/08/02(土) 03:32:38 ID:8L/4b8YW
>>547
vipのスレにあったのとは微妙に違うな
でも本質は一緒っぽいから俺はニヤニヤしてるよ

549 :□7×7=4□□:2008/08/02(土) 17:51:00 ID:/f8+xqX6
>>547
F1人になったらFが全部もらえるの?

550 :□7×7=4□□:2008/08/02(土) 17:51:53 ID:Vwtfaupc
>>549
Yes

551 :ロビーから参戦:2008/08/02(土) 18:32:14 ID:uF3GjIVi
まず基本形まで整理しますか。
海賊はみな0枚より、死の方が怖いという前提だと信じて。
・Fはこう考える。
 @Fはとにかく全否定して全金貨没収を目論む。
・Eはこう考える。
 A残りがEFの2人になったらFに否定されてそれまで。2人にしてはいけない。
・Dはこう考える。
 B残りがDEFの3人になったら@Aの理由でFが否定して必ず殺される。3人にしてはいけない。
・Cはこう考える。
 C残りがCDEFの4人になったらABの理由でEは賛成するしかない。@の理由でFが反対。Bの理由でDが賛成。
  つまりCがどんな分け方をしても決めるしかない。C100枚 D0枚 E0枚 F0枚。これを狙いたい。
・Bはこう考える。
 D残りがBCDEFの5人になったら@の理由でFが反対、Cの理由でCが反対し殺される。5人にしてはいけない。
・Aはこう考える。
 E最初は俺が頭。しかしBはDの理由で賛成、CはCの理由で反対、Fは@の理由で反対。DとEを味方につけりゃあいい。
 A98枚 B0枚 C0枚 D1枚 E1枚 F0枚 こう分けるぜ!!

 【以下談合OKの場合】→激むず
 FBは思った。CかFを味方につけりゃいいんじゃねえの?
 GFは思った。CかAのどちらか、枚数くれるやつに味方するしかねえな。
 HD、Eは思った。話し合いで1枚以上もらいたいな。Cと話し合ってみて、くれるならAつぶそう。
 IAは思った。FGHされるといやだな。均等に分けよう。

 【談合裏切りありの場合】→たぶんきまらねえ。

552 :□7×7=4□□:2008/08/02(土) 18:47:54 ID:Vwtfaupc
>>551
>頭以外の少なくとも半分の海賊がその提案に賛成すれば,その分け方が実行されます。

だから、Bは違うんじゃないか?

553 : ◆kVYqbZx8UQ :2008/08/02(土) 18:53:03 ID:5kya7KT5
どうだ!

554 :□7×7=4□□:2008/08/02(土) 19:01:28 ID:n+leAxxs
>552
DEFが残った場合、D99E1の提案でも
Eの賛成が期待できますね。

555 : ◆IkYr1kTkYQ :2008/08/02(土) 19:08:48 ID:5kya7KT5
正解が2パターンあるような気がしてきた…

556 :ロビーから参戦:2008/08/02(土) 19:09:13 ID:uF3GjIVi
勘違いでした>>552。これはどう?
 @F1人になったらFの総取り。
・Eはこう考える。
 A残りがEFの2人になったら@の理由でFが反対する。2人にしてはいけない。
・Dはこう考える。
 B残りがDEFの3人になったら@Aの理由でFが反対する。Aの理由でEが賛成する。
 D100枚 E0枚 F0枚。これを狙いたい。
・Cはこう考える。
 C残りがCDEFの4人になったらBの理由でDが反対。EはBの理由で1枚でも貰えれば賛成する。
 C99枚 D0枚 E1枚 F0枚。これを狙いたい。
・Bはこう考える。
 D残りがBCDEFの5人になったらCの理由でCが反対、DはCの理由で1枚でも貰えれば賛成する。
 E、Fは2枚以上ならここで賛成する。
 でも2人賛成すればいいから
 B97枚、C0枚 D1枚 E2枚 F0枚。これを狙いたい。
・Aはこう考える。
 E最初は俺が頭。しかしBはDの理由で反対、CはDの理由で1枚でも貰えれば賛成。
 DはDの理由で2枚でも貰えれば賛成。E、FはDの理由で3枚以上ならここで賛成する。
 でも3人賛成すればいいから
 A94枚 B0枚 C1枚 D2枚 E3枚 F0枚 こう分けるぜ!!

557 :□7×7=4□□:2008/08/03(日) 10:07:30 ID:F56Kpp24
これでどうでしょう。
(1)EFが残った場合。Eがどう提案してもFに拒否される。
 Eとしては、E0F100を提案して賛成される可能性に賭ける。
(2)DEFが残った場合。Fは拒否して(1)に持っていこうとするが
 DはEの賛成が得られればOK。D99E1F0を提案すれば
 Eは賛成せざるを得ない。
(3)CDEFが残った場合。賛成2票必要なので、EFの取り分を
 (2)より多くする。C97D0E2F1であれば、Dは拒否するが、
 EFは拒否して(2)になった場合よりも多いので賛成。
 Fが100を狙うにはDのミスに期待することになり合理的でない。
(4)BCDEFが残った場合。(3)と同様EFの賛成でOKなので
 B95C0D0E3F2とする。
(5)ABCDEFの場合。Aの提案には3票必要。E4F3で2票確保。
 CとDも、(4)になって何も貰えないより1枚でも貰った方が良いので
 A92B0C0D1E4F3またはA92B0C1D0E4F3とする。

「多数決原理」という一見公平な手続きなのに最初の提案者が
一方的に有利なのはちょっと気持ち悪い。


558 :□7×7=4□□:2008/08/03(日) 10:32:22 ID:PoIPJEif
>>557
(4)で、BはDFの賛成が得られればいいので
B97 C0 D1 E0 F2
とするとBの取り分が最大になる

すると、(5)ではCDEの賛成が得られればいいから
A96 B0 C1 D2 E1 F0
これでいいんじゃないか

559 :□7×7=4□□:2008/08/04(月) 01:14:05 ID:7we1L2Fk
みんな論理的だということをA〜Fは知ってるんだろうか?
自分の命を握ってる奴に「俺99枚、お前1枚」なんて怖い。
(-_-#)ムカッ!として損得考えずに反対するかもと考えないのだろうか?


560 :□7×7=4□□:2008/08/04(月) 05:44:03 ID:JJeDiZKy
>559
「不利な提案をした奴を殺すメリット」が何枚分に相当するか、あるいは
「損得を度外視して反対する確率」が決まれば。

561 :□7×7=4□□:2008/08/10(日) 00:18:49 ID:Q86JnTUn
>>547
答えを一つに絞りたいなら、
海賊達の傾向として以下の条件が必要。
@金貨0枚になることよりも死ぬことを恐れる
A「金貨」の次に「人間を殺すこと」を欲している

562 :□7×7=4□□:2008/08/10(日) 09:31:12 ID:B8BuFFb9
>561
(2)は条件にないから「進んで求めも避けもしない」でいいと思う。
(1)は不要じゃないかな。

563 :□7×7=4□□:2008/08/11(月) 00:44:06 ID:30w3AP5j
こんな感じかな?
(1)E、Fの二人だけが残った場合
票はFが握っているので、@E 0、F 100か、AE死亡でF100。
(2)D、E、Fの三人が残った場合
Eとしては、(1)の状況になるとFに生殺与奪の権利を与えることになるので、
問題文の「死にたくはありません」から、何があっても賛成せざるをえない。
Fの恣意的な判断に自身の命をゆだねる馬鹿はいない。
よって、D 100、E 0、F 0
(3)C、D、E、Fの四人が残った場合
Dとしては(2)の状況になりたいので反対票を投じることになる。
E、Fとしては、一枚でももらえれば賛成票を投じる。
よって、C 98、D 0、E 1、F 1
(4)B、C、D、E、Fの五人が残った場合
Cは(3)の状況になりたい。
Dは一枚でももらえれば賛成票を投じる。
E、Fのどちらかを買収すればよいので、
B 97、C 0、D 1、E 0(2)、F 2(0)
(5)A、B、C、D、E、Fの六人の場合
Bは(4)の状況になりたい。
Cは一枚でももらえれば賛成する。
Dを買収。 E、Fのどちらかを買収。
答え  A 96、B 0、C 1、D 2、E 1、F 0
  もしくは、A 96、B 0、C 1、D 2、E 0、F 1


564 :□7×7=4□□:2008/08/11(月) 01:35:22 ID:PASoZ3/7
そういう問題なんかな?
問題の前提がはっきりしないので何とも言えないけど.....。
みんな他の奴がどんな奴か知らない。「論理的で貪欲」ということを知らない。提案前の交渉あり。

だとする。3人の場合を考えてみる。

D、E、Fの3人しかいない場合、Dは当然Eと組むべきだ。
DとEは協力すれば両方得をして、協力しなければ共倒れだ。
だから金貨は山分けが妥当だし、2人とも論理的ならそれは理解できるはず。
だからDは「D 50枚 E 50枚 F 0枚」という提案をするはず。

565 :□7×7=4□□:2008/08/12(火) 11:03:12 ID:mKtieEL5
>>564
文章を純粋に読むと、
「頭をトップに構成されている6人の海賊」が前提となっている。
だとすると、「みんな他の奴がどんな奴か知らない」というのはありえないと読むべき。
そもそもこういう論理パズルにおいては、皆が論理的思考をするというのが大前提。
そうでないと問題が解けない。
そして、「提案前の交渉あり」という意味の無いことを勝手に付け加えるな。
しかも、
>D、E、Fの3人しかいない場合、Dは当然Eと組むべきだ。
>DとEは協力すれば両方得をして、協力しなければ共倒れだ。
>だから金貨は山分けが妥当だし、2人とも論理的ならそれは理解できるはず。

これも完全におかしい。どう考えてもDとEでは圧倒的にEが不利。
間違っても共倒れにはならない。論理的なEはこう考える。
「仮に俺がDと組まないとすると、Fと二人きりになる。
 二人きりになるとFが全権を握ることになる。それは何としても避けたい。
 仮にDが『D 100枚、E 0枚、F 0枚』と提案したとしても、
 俺は賛成せざるをえない。なぜなら俺は間違っても死にたくはないからだ。」

わかるかい、坊や?
 

566 :□7×7=4□□:2008/08/12(火) 11:27:55 ID:PeITgqT3
もう一問(たぶん有名なやつ)出していい? ただし拾い物なんで俺も答えは知らない。

567 :□7×7=4□□:2008/08/12(火) 11:30:16 ID:2cUpX9tf
提案前の交渉の内容を定義できたら
新しいパズルになりそうでそれはそれで面白そうだ

568 :□7×7=4□□:2008/08/12(火) 11:37:36 ID:PeITgqT3
この村には100組の夫婦がいて夫は全員浮気しています
妻は全員、自分の夫以外が浮気していることを知っています
この村の掟では浮気や姦通は許されていません
またどの妻も自分の夫が浮気していることがわかれば、すぐに夫を殺す掟があります
女たちは掟に背きません

ある日村の女王は言いました
この村には浮気をしている男が少なくとも一人はいる、と。
さてこの村に何がおきますか

569 :□7×7=4□□:2008/08/12(火) 11:44:54 ID:2cUpX9tf
>>568
全ての妻が他の夫婦の状況を把握していることを
全ての妻は知っているんだよね

570 :□7×7=4□□:2008/08/12(火) 11:50:30 ID:PeITgqT3
>>569
まぁ、そうなると思います(俺も本当に拾っただけなんで、詳しく聞かれても)

あと、多分妻たちは秘密をバラしあったりはしないんだと思います。バラしあっていると
すぐに夫がいなくなりますから

571 :□7×7=4□□:2008/08/12(火) 11:58:22 ID:2cUpX9tf
(i)1組の夫婦の場合
自分の夫しか男がいないので
浮気をしているのが誰か分かり、即座に夫を殺す

(ii)2組の夫婦の場合
相手の夫婦が浮気しているため、女王の言葉は満たされ、2人の女性は夫を殺さない。
女性は相手の夫婦の男性が殺されていないことに気づき、
夫が浮気していると分かり、殺す

(iii)3組の夫婦の場合
少なくとも2人の夫婦が浮気していることを知っているため、
女王の言葉は満たされ、全ての女性は夫を殺さない。

女性Aが自分の夫が浮気をしていないと
女性Bと女性Cが知っているとすると、

女性Bと女性Cは即座に殺人が起こらなかった時点で
自分の夫を殺すはずである。

しかし、しばらくたっても殺されていないのに気づき、
女性Aは夫が浮気していると分かり、自分の夫を殺す

女性B,Cについても同様のことが言える。


次はもう少し一般化させてみる

572 :□7×7=4□□:2008/08/12(火) 12:20:32 ID:2cUpX9tf
殺されていないことを認識するための時間をkとした時、

(iv)k組の夫婦が自分の夫が浮気していることを確かめる時、時間がkかかる
とする。

k+1人の夫婦がいた場合、
ある一人の女性が自分の夫は浮気をしていないと仮定したとすると
他の女性から見ると、その夫婦は浮気をしていないため
考慮する必要がなくなる。
つまり、残りのk組の夫婦が自分の夫を殺すためにかかる時間はkである。

時間kの時に一斉に殺人が起これば自分の夫が浮気していないと分かり、
また、時間kで何も起こらなければ時間k+1で女性は行動を起こす。

他の夫婦も同じ行動を取るので、時間kには何もアクションが起きず
全ての女性は時間k+1の時に自分の夫を殺す

(ii),(iv)より2組以上の全ての夫婦に対して成り立つ

よって100組の夫婦の場合は
時間100に全ての女性が自分の夫を殺す

---
論理パズルだと思考にかかる時間は考慮しなくていいはずだから
即座に殺されることになるのかな

573 :□7×7=4□□:2008/08/12(火) 18:43:45 ID:YAOgAr1E
>>565
恥ずかしい書き込みをする前にもう少し読解力をつけましょう。
あなたが考えつく程度のことはとっくにわかった上で書いてます。
周回遅れなのに先頭を走ってると勘違いしてる子みたい。

574 :□7×7=4□□:2008/08/13(水) 00:37:12 ID:AuGvqzgh
571までは三囚人の帽子問題と同じだからいいとして
572で一般化として時間を出しちゃまずいだろう

575 :□7×7=4□□:2008/08/13(水) 00:50:44 ID:j+DO+YOn
出題するなら正解をちゃんと理解していて説明もできる問題じゃないとグダグダだ。

576 :□7×7=4□□:2008/08/13(水) 08:51:15 ID:VMUv5tD0
>>568
村人全員が疑心暗鬼にかかり、殺し合いが起きる

577 :□7×7=4□□:2008/08/13(水) 14:41:33 ID:axx60gBk
17さんの回答では、1/nと思った時が、
二人かぶったらどちらが貰うのでしょうか?
同時に手を上げたりすると?

持論:
まず、誰かに大体の三等分をしてもらい
その中の一人が他の二人のジュースを同じくらいにする。
それを三人で何回か繰り返す(*重要*自分のジュースは比較しない)

例え:

AはBとCのジュースを比較、調整。
BはAとCのジュースを比較、調整。
cはAとBのジュースを比較、調整。
*繰り返し

上記を何度か行えば、時間はかかると思うけど
全員が納得すると思います。*人間関係のもつれが無ければ
一般論のNの時は両隣の人の比較。又は、両隣〜人までの比較。

もしくは、ペットボトルのふたを使ってはかる。 (最有力)


578 :□7×7=4□□:2008/08/13(水) 15:56:59 ID:j+DO+YOn
>>577
『ジャンケンで決める』とか『最初に参加者に1,2,3,・・・・・ と番号をふっておいて、かぶった場合は一番番号の大きな人が取る』とかで問題なし。

『持論』については論外。全然ダメ。

579 :□7×7=4□□:2008/08/13(水) 16:31:19 ID:1oN4GNCH
>>578
それだと自分が一番大きいジュースを取ったと
思うことができない気がするなあ。

1/nだと思ったときが2人かぶらないように
無限に細かくどちらが速かったか測ればいいと思う。

580 :□7×7=4□□:2008/08/14(木) 08:48:03 ID:6Pmei1p9
577です。
じゃんけんや多数決ほど、理不尽なものの決め方は無いと思います。
それで納得ができるでしょうか、場合に寄っては出来るかもしれませんが。

”納得”を辞書で引くと。
他人の考え・行為を理解し、もっともだと認めること、だそうです。

なので、
自分の考えではなく、人の考えを理解し認めることが出来る方法を取るべきだと
思いました。

579さん。
最初から最後まで読んでないので、もし

納得 = 人より多いジュースを獲得

であるのならば、持論は使えません。
申し訳ありません。ちなみに上記のですと、
回答は存在しない、と言う答えにたどり着きました。

同時とは、まったく一緒と言う意味です。
無限に細かく同じの場合はどうするのか?
という質問でした。


ペットボトルのふたについての突っ込みが
一番先に来ると思っていたので、予想を裏切られました。


581 :□7×7=4□□:2008/08/14(木) 11:56:06 ID:bE6al97m
一番大きいジュースを取る必要なんて無いよ。

ボトルに90ジュースがあってそれを60にしたならコップには当然30入ってるはずだよな?
登場人物が全体の量=90、自分のコップの量=30だと思い続けるなら
後続の人がジュースをどう取ろうが不満は言わない。
また、先に30だと思う量を取られたとしてもボトルには60残っている。
そこから30取ることができるのだから取る順番に対しても不満は言わない。
これが>>17の解答だ。

582 :579:2008/08/14(木) 15:18:42 ID:VlRmZYrE
>>580
人間が量を正確に測ることができないのなら
止めたときの誤差は無限に同じになることはないというのが
持論でした。

納得いかなかったらすみません。

おっと
大きいジュースじゃなくて
1/nより大きいと自分が感じてればいいんだった。

同時の時にどちらか片方が取ることにすると
不公平になるのか考えて見ます。

583 :579:2008/08/14(木) 16:00:28 ID:VlRmZYrE
>>17の方法をおさらいすると
n人の時、
最初に止める人は
1/nの基準が最も少なかった者である。
取った本人は1/n丁度取れたと思っており
残りの人はn-1人に対し,
残りのジュースがn-1/nより多いと考えているので
文句は無い。

付け加えると,最初に止めた人は
1/n以上取ったという気が変わることは無い。

次に残ったジュースの中で
コップのジュースが1/(n-1)になったと感じた人が止める
この人はn-1/nより多いと考えている残りのジュースの中の
1/n-1を取ったので,取ったジュースは1/nより多く取れたと考えている。

同じように続けていき
最後は2/nより多いと,残った二人が考えているジュースを
1/2になったと思ったときに止めた者と
残っているジュースは1/2より多いと思っている者でジュースを分け合う。

584 :579:2008/08/14(木) 16:02:21 ID:VlRmZYrE
この経過でもし,
1/nと感じたタイミングが同じ人が複数人いた場合はどうなるか。

上の例だと
1/nと感じたタイミングが同じだと取れなかった人は
>残りのジュースがn-1/nより多いと考えているので

>残りのジュースがn-1/nちょうどだと考えているので
に変わるだけで問題は無い。


実際,判断が正確なら全員のタイミングが一致することになるが
その時は誰から取っていってもジュースは
丁度1/nずつ行き渡ることになる。

585 :□7×7=4□□:2008/08/14(木) 22:36:59 ID:v4h1vYMr
>>583
大体合ってるけど>>17の内容を勝手に変えちゃいけません。
>>17は常に「ジュース全体の1/n」だと思ったところでストップかけることになってる。
残りのジュースを残っている人の頭数で割った量だと思ったところでストップかけるなんて書いてない。
まあそのやり方、要するに「1人抜けるごとにリセットして>>17を繰り返す」というやり方でも正解にはなるけどね。

586 :□7×7=4□□:2008/08/15(金) 01:12:01 ID:SGD+4/43
>>568
まずは問題を整理
妻が知っていることは以下の通り
1、村に浮気夫がいる
2、村に自分以外の浮気夫がいる
3、村の掟
4、妻全員が1、2、3、を知っている
5、妻全員が4を知っている
6、以下ループ
ここまでで問題があったら指摘してください

587 :□7×7=4□□:2008/08/15(金) 01:20:19 ID:SGD+4/43
>>586
少しおかしいな…
自分という言葉を使ったせいで混乱している模様
各妻はそれぞれの夫以外の夫の集合の中に浮気夫がいることを知っている
とすると、浮気夫が2人いればいいので村は平和
……ボスケテ

588 :□7×7=4□□:2008/08/15(金) 02:36:37 ID:s1e5BHKo
各妻は、すべてのよその夫の浮気の有無について知っていて
しかもよその夫の浮気の有無を知っているということ自体も周知
というわけだな

5組の場合で言ってみよう

A妻は考える:
「もしうちのA夫が浮気をしてないとすれば、B妻はこう考えるだろう:
 「A夫は浮気をしていない。ということは、もしうちのB夫が浮気を
 してないとすれば、C妻はこう考えるだろう:
  「A夫とB夫は浮気をしていない。ということは、もしうちのC夫が
  浮気をしてないとすれば、D妻はこう考えるだろう:
   「A夫とB夫とC夫は浮気をしていない。ということは、もしうちの
   D夫が浮気をしてないとすれば、E妻はこう考えるだろう:
    「A夫とB夫とC夫とD夫は浮気をしていない。ということは、
    うちのE夫が浮気をしているということだ。殺そう」
   …よって、E夫は殺されるだろう。
   しかし、実際にはE夫は殺されていないようだ。つまり、うちの
   D夫は浮気をしているということだ。殺そう」
  …よって、D夫は殺されるだろう。
  しかし、実際にはD夫は殺されていないようだ。つまり、うちの
  C夫は浮気をしているということだ。殺そう」
 …よって、C夫は殺されるだろう。
 しかし、実際にはC夫は殺されていないようだ。つまり、うちの
 B夫は浮気をしているということだ。殺そう」
…よって、B夫は殺されるだろう。
しかし、実際にはB夫は殺されていないようだ。つまり、うちの
A夫は浮気をしているということだ。殺そう」

589 :□7×7=4□□:2008/08/15(金) 15:19:42 ID:xoG7MUtp
582さん。
>>人間が量を正確に測ることができないのなら
>>止めたときの誤差は無限に同じになることはないというのが
>>持論でした。

考え方には納得できます。ですが、しっくりこない(笑
仮に、人間が正確に量る事が出来ないとします。

1/n ≠ 誰かの答え 

ですが、それだけで

誰かの答え ≠ その他の答え

の証明にはなりえません。(頭が固いのかな?

あと、不公平についてですが。
客観的に、又は第三者的に、
物事を見なければ全てが不公平だと思っています。


583さん。
”取れるのは、1/nの基準が最も少なかった者である。 ”
と言うのは初耳です。*最初から最後まで読んでいません。

その場合、あげた数値が同じ場合はどうなるのでしょうか?
(質問の仕方を変えます)

584さん。
全員が正確である確率と、
一人が間違っている確率ではどちらが多いでしょうか?

突飛な質問だと自覚しているので、
質問の意味が伝わらない場合は無視してください。

585さん。
583さんは、同じ事を言っているのではないでしょうか?

>次に残ったジュースの中で
>コップのジュースが1/(n-1)になったと感じた人が止める


590 :□7×7=4□□:2008/08/15(金) 15:28:57 ID:xoG7MUtp
589です。
空白が無いので少しずれていますね。あと、少し修正。

585さん。
583さんは、同じ様な事を言っているのではないでしょうか?
>次に残ったジュースの中で
>コップのジュースが1/(n-1)になったと感じた人が止める
____________^




591 :□7×7=4□□:2008/08/15(金) 15:30:09 ID:xoG7MUtp
またズレてます。
掲示板というのは難しい。

592 :□7×7=4□□:2008/08/15(金) 15:39:35 ID:xoG7MUtp
(((a=b)a)(a2-2ab))/(a2-ab)

593 :579:2008/08/15(金) 16:50:44 ID:1QlSbyUC
>>589

>>582へのレス
確かに誰かの基準が一致するケースについても考える必要がありそうです。
>全てが不公平
確かにこの問題,この方法で正確さを測ることはできないし,必要がないようですね。

>>583へのレス
各自が1/nだと思ったところで止めるわけですから,
最初に止めるのは1/nの基準が少なかった場合になります。

あげた数値が同じ場合は>>584になります。

>>584へのレス
すみません
基本的に>>582の考え方なので,
同じになることはあるかもしれないが
(というわけで>>582以降で同じになった時のことを考えている)

二人以上の基準が一致する確率は0だと考えています。
二人が0から1までの実数を選んだ時
それが一致する事象はありますが,その確率は0です。

ついでに
>>584の全員の基準が一致した時のように,
1人を除く全員の基準が一致した場合のことを考えてみます。

コップのジュースを
1/n : n-1/n に分ける

(i)1人の1/nの基準<他の全員の1/nの基準

1人が先に1/nのところで止めるが
他の全員の基準から
コップに残ったジュースはn-1/nより多いので異論はない。
その後,コップのジュースは他の全員に公平に分けられる。

(ii)1人の1/nの基準>他の全員の1/nの基準

1人を除く全員が先に1/nのところで止める
基準の違う1人は
ジュースを取った人は1/nより少なかったと思い納得する。
他の全員は,その中で誰が取っても
取った人は1/n丁度取ったと考えるので
残るジュースは減っていないため納得する。
最終的に1人を除く全員が同じタイミングで止めていき
同じ量のジュースを手に入れる。
そのたびに1人は1/nより少ないジュースを取ったと考えるので納得する。

ここまで書いていて思ったけれど>>584の例は
全員が正確じゃなくて全員の基準が一致した時のほうが良かった。
正確かどうかはこの問題に全く関係なかったので混乱しそう。

594 :□7×7=4□□:2008/08/15(金) 18:22:29 ID:Bjw/3ryw
キミは長々と何を言っとるのかね?
>>17なんて本当に簡単なことなのに、何とかして難しくしたいんだね。

595 :□7×7=4□□:2008/08/17(日) 06:37:46 ID:FJVqRhHX
577の持論の全然だめなところが聞きたいのですが、
誰か、箇条書きでお願いします。

596 :□7×7=4□□:2008/08/17(日) 13:52:02 ID:Mm2W2rH/
「他の2人の量は同じ。自分のだけ少ない。」と全員が思えばアウト。

597 :□7×7=4□□:2008/08/18(月) 17:34:30 ID:t28tyUkV
この問題、単純に等分すればいいとおもうが
それで全員が納得するもんでもない

例えば形状の違うコップの中からひとつを計量用に使用して
均等に注いでいき、最後に計量用に使ったコップに注いで全員で乾杯

そして残った分は冷蔵庫とかに保存したとして全員均等に分配されたとしても
一人でも「喉が渇いてるからもう少し欲しかったなあ」と思えば失敗である
全員が満足する量を分ければ全員にいきわたらない事態に陥る可能性がある

全員が納得って点が大変キビシイ
よって結論は>>4

598 :□7×7=4□□:2008/08/19(火) 12:52:55 ID:I1RjHFqK
分けたあとジュースを飲むなんてどこにも書いてないじゃん
なんかのゲームで、より正確に1/nに分けたグループが賞金をもらえるという状況かもしれないじゃん

599 :□7×7=4□□:2008/08/19(火) 14:26:16 ID:vzomCe9l
そういえば正確に分けろなんてどこにも書いてないな・・・

600 :□7×7=4□□:2008/08/20(水) 13:50:00 ID:k4+fNJe+
とりあえず>>225を読んでみようか

601 :□7×7=4□□:2008/08/20(水) 16:45:25 ID:NsRSJU9E
>>600
無羨望分割の解答って
このスレで誰か考えてるの?

602 :□7×7=4□□:2008/08/20(水) 17:52:50 ID:k4+fNJe+
>>601
挑戦中
結構難しくて面白い

603 :□7×7=4□□:2008/08/21(木) 16:30:28 ID:rAffELlf
>>490の分け方で三等分して
2人が「ABが1/3より多く、Aが最も多い」といった場合
AのジュースをCにちょっとずつ移す
「AとBは同じ量になった」と先に思った人がBを、もう1人はAを、分けた人はCを受け取る

2人が「(他の量はともかく)Aがもっとも多い」といった場合
ジュースを分けた人がAのジュースをBCに同量ずつ移す
どちらかが「AとBが同じ量になった」と判断した場合、その人はBを受け取り
今度はAからCにだけジュースを移す
残った人が「ACが同量になった」と判断したらその人はAを受け取り、分けた人はCを受け取る

604 :□7×7=4□□:2008/08/21(木) 18:25:11 ID:PFE/mIcK
三者分割は出来ました。
ですが、255さんの言うとおり一般化できない。
一般化できる方法はあるのでしょうか?

605 :□7×7=4□□:2008/08/21(木) 19:04:46 ID:PFE/mIcK
596さん。
なるほど、論理パズルとしては間違いですね。
でも、"全然だめ"の評価は納得いきません。

三人の場合:
三人同時に「他の二人は同じ、自分は少ない」と思うことはないです、
「他の二人は同じ」と二人以上が思うときは完全に公平なときですので。

606 :□7×7=4□□:2008/08/21(木) 22:50:06 ID:S3k6jeJj
>>605
全然わかってないな。「AとBが同じでBとCが同じならAとBとCは同じ」みたいなこと考えてるな?
3人とも「他の2人のジュースの量は同じ。自分のだけ少ない。」と『思う』ことは充分あり得るんだよ?
本当に他の2人のジュースの量が同じかどうかなんてわかんないよ。

607 :□7×7=4□□:2008/08/22(金) 14:41:48 ID:o7BfL/Bo
正解はないと分かってますが。
あくまで、持論の方で。(しつこいよね)

全く同じにする必要はないのでしょう?
納得させるには十分ではないですか?

608 :□7×7=4□□:2008/08/22(金) 14:43:31 ID:o7BfL/Bo
訂正:

これは正解ではないと分かってますが。
あくまで、持論の方で。(しつこいよね)

全く同じにする必要はないのでしょう?
納得させるには十分ではないですか?

609 :□7×7=4□□:2008/08/22(金) 14:46:23 ID:o7BfL/Bo
つまり、「不公平かもしれないけど、納得はするのでは?」
と言いたいんです。

610 :□7×7=4□□:2008/08/22(金) 16:13:25 ID:cpU6zK6Y
だからその持論では3人とも「他の2人の量は同じ。自分のだけ少ない。」と思うことはあり得るんだよ?
そうなったら3人とも納得できないでしょ?

611 :□7×7=4□□:2008/08/24(日) 20:32:05 ID:LJa7DB9r
誰か次の問題投下してくれ。
俺が難問だしちゃうぞ?

612 :□7×7=4□□:2008/08/24(日) 20:37:27 ID:KiCpptOf
出しっぱなしじゃなくてちゃんと解説出来るならOK

613 :□7×7=4□□:2008/08/24(日) 22:21:35 ID:LJa7DB9r
あなたには、トム、ジャック、ケビンという、3人の仲間がいる。
ある有力な情報筋からこういう連絡があった。
「どうやらお前の3人の部下の1人に、マーカスに扮したスパイがいるらしい。
しかし気を付けて欲しい。
お前の3人の仲間の1人は、どうやら嘘をつくようだ。
その人物は誰かわからない。
スパイかもしれないし、残りの2人の内の1人かもしれない。
スパイはマーカスになりきっているので、『俺はマーカスではない』という発言が嘘ということになる。
ちなみにマーカスの存在は誰も知らない。」
しかし、仲間とは言っても、顔も知らなければ声も知らない。
3人の仲間は3つの都市(東京、ワシントン、ロンドン)を転々としているが、誰がどこにいるかは皆目見当がつかない。
それぞれの都市から連絡があった。
東京「俺はジャックではない。」
ワシントン「俺がジャックなわけないだろう。ロンドンにいるのがケビンだ。」
ロンドン「東京にいるのがトムだ。」
マーカスに扮したスパイはどこにいる誰か?

614 :□7×7=4□□:2008/08/24(日) 22:22:46 ID:LJa7DB9r
ちょっと簡単過ぎたか。

615 :□7×7=4□□:2008/08/24(日) 23:47:23 ID:KiCpptOf
3人の仲間はトム、ジャック、ケビンなのにマーカスに扮してるとはどういう意味?マーカスって何?

616 :□7×7=4□□:2008/08/25(月) 10:00:53 ID:vUPIIIxE
誰か一人がマーカス役をやってるんだろ
ジャックがマーカスのときジャックが「俺はジャックじゃない」というのは嘘になる?

617 :□7×7=4□□:2008/08/25(月) 10:42:45 ID:kr5eAC2o
>>616
それは本当になる。


ちょっとわかりにくかったかな。
では少し設定を変更して、こう考えてみるとわかりやすいかも。
「トム、ジャック、ケビン。この3人の中の1人が、どうやら二重人格の持ち主らしい。
この二番目の人格の名前はマーカス。
誰も自身が二重人格の持ち主だとは思っていないばかりか、
そもそも3人の中の1人が二重人格の持ち主であることすら知らない。
もちろん二番目の人格のマーカスは、自身のことをマーカス本人だと思っている。
誰が二重人格か?」


618 :□7×7=4□□:2008/08/25(月) 17:58:28 ID:OEtjz2gE
ジャックがマーカスのときジャックが
「俺がジャックなわけないだろう。ロンドンにいるのがケビンだ。」というのは全部本当?
それとも前半が本当で後半が嘘ってこと?

619 :□7×7=4□□:2008/08/25(月) 19:44:39 ID:kr5eAC2o
>>618
全部本当。


620 :□7×7=4□□:2008/08/25(月) 23:03:06 ID:vUPIIIxE
一応確認
俺はジャックではない。ロンドンにいるのがケビンだ。
が嘘のとき、本当は
俺がジャックであるか、ロンドンにいるのがケビンでないか、どちらかだ。
になるの?

621 :□7×7=4□□:2008/08/25(月) 23:51:22 ID:kr5eAC2o
>>620
うん。
「俺はジャックではない。『かつ』ロンドンにいるのはケビンだ。」
の嘘は、
「俺はジャックである。『あるいは』ロンドンにいるのはケビンではない。」
こうなりますな。

622 :□7×7=4□□:2008/08/26(火) 14:48:34 ID:i7T2xT4Y
問いただされないよう整頓して再度問題を出してくれ
>>613-621の流れで解く気も起きない

623 :□7×7=4□□:2008/08/26(火) 15:55:30 ID:0XAE1dM2
(1)東京が嘘つきだとすると、東京とロンドンの発言が矛盾

(2)ワシントンが嘘つきだとすると、ロンドンより東京はトム(マーカスか不明)
 a:両方嘘の場合
  ワシントンはジャックとなるが、ロンドンが誰でも矛盾
 b:前者だけが嘘の場合
  ワシントンがジャックでロンドンがケビン、誰もがマーカスであり得る
 c:後者だけが嘘の場合
  ワシントンがケビンでロンドンがジャック、誰もがマーカスであり得る

(3)ロンドンが嘘つきだとすると東京とロンドンより東京はジャック(マーカス)、あるいはケビン(マーカスか不明)
 a:東京がジャック(マーカス)である場合
  ワシントンがトム、ロンドンがケビン
 b:東京がケビンの場合
  ワシントンの発言と矛盾

(2)-bと(2)-cで5通り、(3)-aも合わせて6通りも答えがも出てきたが、何処か間違ってるだろうか
嘘つきが嘘しか言わないなら一つに定まるけど

624 :613:2008/08/26(火) 18:32:50 ID:vFZ30Lun
申し訳ない・・・
>>621が間違いでした。
ワシントンが嘘つきの場合、正しくは
「俺はジャックである。そしてロンドンはケビンじゃない。」
これでした。
そうすると>>623氏の(3)-aだけになります。
本当にごめんなさい。吊ってきます。

625 :□7×7=4□□:2008/08/27(水) 13:10:58 ID:5C6nQsd5
暇だ。
次の問題誰か出してくれ。

626 :帽子問題:2008/08/27(水) 13:19:06 ID:5C6nQsd5
有名問題張っていくか。

4人の賢人A,B,C,Dが縦一列に並んでいます。この4人に青い帽子
4つ、赤い帽子3つのうちから1つを選んでかぶせることにする。
 4人は帽子の色と数の内訳を知っていて、Aを先頭にA〜Dの順に並んで
おり、自分より前にいる人の帽子の色は見分けられるが、
自分を含め自分より後ろにいる人の帽子
の色はわからないものとする。D,C,Bの順に自分の帽子の色がわかるか
どうかを尋ねたところ、3人のいずれも「わからない」と答えた。これを聞
いていたAに同様の質問をしたところ、Aは自分の色がわかったと答えた。
ABCDの帽子の色を答えよ。


627 :にせ金貨:2008/08/27(水) 13:20:52 ID:5C6nQsd5
金貨が8枚あります。どれも見た目には全く
同じですが、1枚だけはにせ金貨で、重さが
わずかに軽い。
天秤を2回だけつかって、にせ金貨を見つけ
るにはどのように計ったらよいでしょう。


628 :にせ金貨2:2008/08/27(水) 13:22:21 ID:5C6nQsd5
金貨が13枚ある。どれも見た目には全く
同じだが、1枚だけはにせ金貨で、重さが
本物と比べ異なるものの、重いか軽いかわからない。
天秤を3回だけつかって、にせ金貨を見つけ
るにはどのように計ったらよいか。


629 :国会採決問題:2008/08/27(水) 13:34:29 ID:5C6nQsd5
無記名投票(誰が賛成したかわからない投票の仕方)で法案の採
決を決定する際に、国会議員に配られた端末のスイッチを押した
結果が電光掲示板に反映され、1票の差でもすぐに採決ができる
システムを導入しました。
スイッチは青のボタンにYES、赤のボタンにはNOという文字
が書かれるべきだったのですが、ボタンをつくる業者が間違って、
いくつかの端末には青のボタンにNO、赤のボタンにYESと逆
に書いてしまいました。(間違っているものもあれば正しいもの
もある)
法案の採決直前に、このことに気付いたのですが、このシステム
をやっとのことで導入してもらった業者は、事実を公表すると信
用できないということで国会が紛糾し、システム導入が取り消し
になる恐れがあったので、システム推進派の議長にだけ事実を打
ち明け、すべての議員の意志が正しく電光掲示板に反映されるよ
うな質問の仕方でこの場を乗り切り、採決が終了してから端末を
回収することにしました。(どうでもいいのですが)
さて、第1号法案の賛否を問うとき、どのような質問をしたらよ
いでしょうか?
ただし、少々変な質問をしても疑うような勘のいい議員はいない
が、「第1号法案に賛成の人は青色のボタンを、反対の人は赤色
のボタンを押してください」と言うと、間違った端末を持ってい
る人は、さすがに「賛成がNOで反対がYESというのはおかし
い」という疑念を持ちますので、そうは言えないものとします。


630 :囚人恩赦:2008/08/27(水) 13:50:33 ID:5C6nQsd5
ある国で、処刑されることになっている3人の囚人A,B,Cが、
それぞれの独房に入っていました。
やがて、この国の王子が結婚するというので、3人のうち一人だけ
恩赦にすることになりましたが、誰が釈放されるかは同じ確率で決
定されました。
しかし、囚人は誰が恩赦になるかは知りません。
そこで、結果を知っている看守に囚人Aが次のように尋ねました。
「BとCのうちどちらが処刑されるのか教えてくれないか。
どちらかは必ず処刑されるのだから、それを知ったところで何も
問題ないだろう?」
看守はAの言い分に納得して、「Bが処刑される」と答えました。
ところが、これを聞いた囚人Aは、何も知らなかったときは釈放さ
れる確率は3分の1だったけど、今は自分かCのどちらかが釈放さ
れることになるので、釈放される確率は2分の1に減ったことにな
ると考え喜びました。

(1)囚人Aが間違っていることを証明せよ
(2)囚人Aの言い分が正しくなるのはどんな場合か

631 :□7×7=4□□:2008/08/27(水) 13:54:05 ID:5C6nQsd5
以上5問。
知っている人も多いかと思うが解答は3日後。

632 :□7×7=4□□:2008/08/28(木) 21:04:02 ID:McRBxd94
>>626
Dが自分の色がわかるとき、自分の前に赤しかいない
したがってABCの誰かは青
同様にCがわからないことからABのどちらかは青
BがわからないことからAは青
Aがわかるかは新しい事を言ってない
BCDの色はシラネ

633 :□7×7=4□□:2008/08/29(金) 01:45:43 ID:GvMGwjWE
コップの問題はさ、

A、B、Cがあるとする。
Aに適当に入れて、Bに移す。
もう一回同じ量にA入れて、(同じコップなので大体同じにできるはず)Cに移す
Aに同じ量入れる

これで良くね?

もしくは各自に心ゆくまで飲ませる

634 :□7×7=4□□:2008/08/29(金) 06:43:51 ID:OhlYdWez
そういえば、最近1本のジュースを3人で分けることがあったけど、
1.5lもあったから、全員が飲みたい分を飲んでもまだ余って
誰もが満足してたよ。
本当に満足するかどうかは飲みたい量を飲めたかどうかで、
他人との比較は関係ないみたい。
この問題は実際にケーキを分ける時に生じた問題から生まれたのかも知れないけど、
パズルになってから現実とは乖離してると考えたほうがいいね。

635 :□7×7=4□□:2008/09/01(月) 08:33:31 ID:3OBJd9JP
>>629
第1号法案に賛成の人は青色のボタンを、反対の人は赤色
のボタンを押してください
というのをオブラートに包んで言うしかないと思うのだが

636 :□7×7=4□□:2008/09/01(月) 22:16:17 ID:TCdohOqt
だからそれを議員が論理的に正しいと思えるように包めと問うているのだろう

第1号法案に賛成かと聞かれたら、青いボタンを押しますか?

637 :□7×7=4□□:2008/09/08(月) 13:59:11 ID:gB6IaELi
「3枚のカードがある。
 一枚は両面金、一枚は両面銀、一枚は片面金でもう片面が銀。
 ここから一枚取り出したところ、表は金でした。
 さてこのカードの裏面は金か銀か。賭けるとしたらどっちが特か」

638 :□7×7=4□□:2008/09/08(月) 18:49:31 ID:QuLtZvml
このスレを舐めてるのかっ!

639 :□7×7=4□□:2008/09/08(月) 20:06:50 ID:o9ClHRj9
>>627 8枚を3枚:3枚:2枚に分ける。
(3:3):2
括弧内が天秤。
3:3が釣り合えば残り2枚のうちどちらかが軽い。
2枚の内どちらかが軽いならその2枚を天秤にかけて終了。
3:3が釣り合わなければ軽いほう3枚をもう一度次のように天秤にかける。
3枚をA・B・Cとし、
(A:B):C
という具合に天秤ではかる(括弧内が天秤)。
AとBが釣り合えばCが軽い。

640 :□7×7=4□□:2008/09/08(月) 20:46:20 ID:qHdmJDfC
>>638
舐められてもしょうがないよ

641 :□7×7=4□□:2008/09/08(月) 23:39:12 ID:/f/Swj0V
>>637
金と銀の出る確率は2:1に見せかけて
実は5分5分。

642 :□7×7=4□□:2008/09/09(火) 11:24:27 ID:zOMVdwwa
>>629
>第1号法案の賛否を問うとき、どのような質問をしたらよいでしょうか?

これが問題なら、どんな質問をしてもいいんじゃないか?
正確な解答は必要無いんだろ?

正確な解答が必要ならそのボタンを置いたまま使わさせず、挙手でYes Noの意思を示させればいい話。

289 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)